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The bottleneck in genome sequencing is no longer data generation —
the computational challenges around data analysis, display and inte-
gration are now rate limiting.

New approaches and methods are required to meet these challenges.
Green, Guyer and National Human Genome Research Institute

Charting a course for genomic medicine from base pairs to bedside, Nature 2011.

DNA SEQUENCING SOARS Cost per Raw Megabase of DNA Sequence

Human genomes are being sequenced at an ever-increasing rate. The 1000 Genomes Project has

aggregated hundreds of genomes; The Cancer Genome Atlas (TGCA) has gathered several thousand; and

the Exome Aggregation Consortium (ExAC) has sequenced more than 60,000 exomes. Dotted lines show

three possible future growth curves.
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Double every 18 months (Moore's law)

D sy Clramt amounti;‘»""’ I e e
= ExAc_/j

TCGA ,~~

: National Human Genome
,1,QQQGE,”,OWE,5./, T S SR ——— m)ﬁeseamhlnsmule

= Human Genome Project genome.gov/sequencingcosts
= 1st personal genome '

R ———" ] T T 5T T TTrT T T T -
109 cosiiiimninminnisnhii 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Cumulative number of human genomes

2001 2005 2010 2015

Stephens, Z. D. et al. PLoS Biol.13, e1002195 (2015), www.genome.gov/sequencingcosts
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INFORMATICS

THE MACHINE LEARNING APPROACH

® Alot of data

® Data is noisy

® |arge number of features
® No precise biological theory
® Complex relationships

Let the data do the talking!
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Genome wide association studies
Find genetic variation corresponding to an attribute of interest.

The search for genes
A very brief overview of molecular biology

Biological sequencing
The big data revolution in life sciences
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SNP
Single Nucleotide Polymorphisms or single nucleotide variations
(SNVs) are mutations on a single nucleotide (A,C,T or G) in the
genome.
For example: AAGCCTA to AAGCTTA.

Alleles
There are two alleles: e.g. Cand T.

Major/Minor allele
The nucleotide that occurs commonly in the population is called the
major allele (denoted by a capital B) and the nucleotide that occurs
more rarely is called the minor allele (denoted by a small letter b).
Diploid
haploid = one chromosome set
diploid = two chromosome sets
hexaploid = six chromosome sets
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Genotype
The genotype is the specific combination of alleles.

Phenotype
The phenotype is the observable trait or characteristic of an individ-
ual, for example whether the individual is healthy or sick.

Case-control studies
A cohort of sick individuals (cases) and healthy individuals (con-
trols) are genotyped and their corresponding binary phenotype are
recorded.

We use the framework of hypothesis testing
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® Given a case control study, test whether a particular SNP is associ-
ated with the phenotype.

® | ook through each SNP one by one, and test to see if there is a
difference in the frequency of the alleles seen in cases versus con-
trols.

® |f difference is statistically significant
—
SNP is associated with the phenotype.
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null hypothesis
genotype is independent of the phenotype

alternative hypothesis J;
SNP is associated with the disease state

hypothesis test can be stated as follows
Hy: 0 €0 and H,: 0 €06y

Important design choices

® How to represent intuition as a probabilistic model?
® How to decide on a test statistic?
® What is the distribution of the random variable?
® What is the level of significance (a)?
Sinsheimer, “Statistics 101” — A Primer for the Genetics of Complex Human Disease, 2011

Agresti, “Categorical Data Analysis”, 2002
Wasserman, “All of Statistics”, 2004
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Let X be a random variable with range X.
R C X called the rejection region

If X € R then we reject the null hypothesis, otherwise we do not
reject the null hypothesis.

R=A{z:T(x) > c}

where T is a test statistic and c is a critical value.

The p-value is the probability of obtaining a test statistic at least as
extreme as the one that was actually observed, assuming that the
null hypothesis is true.
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Outcomes of hypothesis tests

Accept H, Reject H,
H,true| correct type | error
H, true |type Il error  correct

Significance level

The probability of a rejecting 3, when it is
true is called the significance level.

p-value vs significance

® Reject H, when p-value < significance level
® p-value is computed from observation
® significance level is chosen by expert
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® Single locus, haploid genome
® 200 individuals: 100 cases, 100 controls
$® B and b are equally common in the population

® Null hypothesis
No association between the allele and the phenotype

allele B allele b
Case |50 (FEp1) 50 (Ey1)
Control | 50 (Epg) 50 (Ep)
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allele B allele b allele B allele b
Case |50 (Ep1) 50 (Ep) Case |23 (Op1) 77 (Op1)
Control | 50 (Ep) 50 (Ey) Control | 68 (Op) 32 (Oy)

Pearson y’ test of independence
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allele B allele b allele B allele b
Case |50 (Ep1) 50 (Eyq) Case |23 (Op1) 77 (O1)
Control | 50 (Epo) 50 (Ep0) Control | 68 (Opo) 32 (Oyp)
¥2 (23 — 50)? . (77 — 50)? . (68 — 50)? . (32 — 50)?
50 50 50 50
=42.12

What is the probability of observing a value greater than 42.12 of a
random variable given that the null hypothesis is true?

P(X? > 42.12) < 10717,
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® .. the probability that the null hypothesis is true.
® ... the probability that a finding is “merely a fluke”.
® ... the probability of falsely rejecting the null hypothesis.

® .. the probability that a replicating experiment would not yield the
same conclusion.

® .. indicating the size or importance of the observed effect.

® The significance level of the test is not determined by the p-value.
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M hypothesis tests
Hom, versus Him, m=1...,.M
and let py, ..., py denote the M p-values for these tests.

Bonferroni Method
Reject null hypothesis Hy,, if

(07

Outcome
The probability of falsely rejecting any null hypothesis is less than or
equal to a.
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Let M, be the number of null hypotheses that are true.

M, = M — M,
H, accepted | H, rejected | Total
Hy True U Vv M,
H, False T S M,
Total M-R R M

Define the false discovery proportion (FDP)

— {V/R if R >0

0 if R =0.
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M hypothesis tests
We order the p-values in increasing order.

Benjamini-Hochberg Method
1. For a given «, find the largest & such that

@8
Pr S lfM
2. Thenreject all H,,, form=1,... k.
Theorem
M
FDR =E(FDP) < —a < a.
M
Outcome

For a given significance level «, the Benjamini Hochberg method
bounds the false discovery rate.
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Suppose 800 of 500,000 variants are significant at 0.05 level.

p-value < 0.05
Expect 0.05 * 500000 = 25000 false positives

false discovery rate < 0.05
Expect 0.05 * 800 = 40 false positives

family wise error rate < 0.05
The probability of at least 1 false positive < 0.05
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The basics of hypothesis testing applied to GWAS

Some Genomics Nomenclature
GWAS, SNPs, Allele, Diploid, Genotype, Phenotype

Hypothesis Testing

9o Hy vs H;
® Design test statistic and compute p-value
® Reject H, if p-value < «a.

Multiple Testing

® Bonferroni correction
® Benjamini Hochberg method

http://www.ong-home.my/download/notes-gwas-hypo-test.pdf
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Genome Wide Interaction Search (GWIS)
Consider the association of all pairs of genotypes to phenotypes

Large search space

® 5000 individuals, 500,000 SNPs
® Need to tabulate 125 billion contingency tables

Classification based analysis

o
o

® Focus on SNPs in case control studies
® New statistical tests

® Consider specificity and sensitivity

® Gain over univariate ROC

® CPU (~ days) and GPU (= hours)

o
o

@mconvex(
RoC(g1)UROC(g2))
—8—R0OC(g1,92)
—e—ROC(g1)
—e—R0OC(g2)

True Positive Rate (Sensitivity)
o
S

o
N

o
o &
S

T T T T |
0.2 0.4 0.6 0.8 1
False Positive Rate (1-Specificity)

Web service
http://gwisl.research.nicta.com.au/
Goudey et. al. BMC Genomics, 2013



What is a biomarker?

How to measure?

® Clinical observations
® Whole genome sequencing
® Probes (arrays) for large studies

Looking at shadows
What to measure?

® Assumption: genetic cause
® DNA, RNA, Protein
® SNP, INDEL, CNV, Methylation, ...

Where to measure?

® Non-invasive diagnostic test
® Does tissue show variation?
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Genome wide association studies
Find genetic variation corresponding to an attribute of interest.

The search for genes
A very brief overview of molecular biology

Biological sequencing
The big data revolution in life sciences
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https://www.nasa.gov/image-feature/nasa-captures-epic-earth-image
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Genomics has given us a new perspective
that has demanded a complete recasting -
and expansion of the material on molecu- Molecular Biology of  —=

lar genetics ... THE CELL
ot P
l

7

The traditionally explanatory cartoons that
we show on nearly every page of the book
generally represent only the primitive first
step toward an explanation.

Preface: Alberts et. al. 2002
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Bacteria, Archea, Eukaroyte

Eukaryote Prokaryote

Membrane- Mitochondrion
enclosed nucleus

Nucleolu “ M Ribosomes
> -

Nucleoid Capsule
(some prokaryotes)

Flagellum

Cell Wall

Cell Membrane :
(in some eukaryotes)




Nucleus Chromosome

https://en.wikipedia.org/wiki/DNA




DATA
61

[ €XON — intron |€XON - intron | €XON -intron | €XON - intron |— &Xon
DNA - I I

ATG GT AG GT AG GT AG GT AG TG TAA

TGA

UUG,UAA
AUG GU AG GU AG GU AG GU AG UGA
pre-mRNA  c2p | N s s S "

transcription

splicing

mRNA o R ——
AUG
translation Ugi,UAA
U
protein N I ¢

DNA Positive strand, written 5’ to 3.
e.g. AATCGAAGTTA

RNAT = U
e.g. AAUCGAAGUUA

Amino acid 3 letters of RNA (codon) = amino acid,
20 letter alphabet.

Lewin, Genes
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Example: Recognition of splice sites

® Every 'AG’ is a possible acceptor splice site

® Computer has to learn what splice sites look like
#® given some known genes/splice sites ...

® Prediction on unknown DNA

ATCCCGGATTGGATG
AGGGTCCCCTTGAGAGG
CCGGGTATATATATAGG
TTAGGTTCCCTCCGCGC
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® Many algorithms depend on numerical representations.
® Each example is a vector of values (features).

® Use background knowledge to design good features.
AAGAACGTTTCAACCATTTTGAG

CATTACAGATATAATAATCTAATT
TCACTAACACATCCGTCTGTGCC
TCATCAATCTCCAAAACCAACAC
intron exon

X1 X9 X3 X4 X5 X5 X7 X§ .
GC before 0.6 0.2 04 0.3 0.2 04 0.5 0.5 ...
GC after 0.7 0.7 0.3 0.6 0.3 04 0.7 0.6 ...
AGAGAAG| 0 0 0 1 1 0 0 1
TTTAG 111 0 0 1 0 0

Label +1 +1 +1 -1 —1 +1 —1 —1 ...
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® Given: Potential acceptor splice sites
AGAACGTTTCAACCATTTTGAG

CATTACAGATATAATAATCTAATT
"TCACTAACACATCCGTCTGTGCC
TCATCAATCTCCAAAACCAACAC

intron exon
® Goal: Rule that distinguishes true from false ones
A
o @ .'\decoy
< o sites e.g. exploit that exons have higher
S . O GC content
o splice sites or
C
8 that certain motifs are located
3 nearby
>

GC Content after 'AG'




ATCCCGGATTGGATG AT +
AGGGTCCCCTTGAGAGG +

CCGGGTATATATATAGG
TTAGGTTCCCTCCGCGC °

Support vector machines and kernels for computational biology, PLoS Comp. Bio. 2008
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Given the DNA, predict resulting mRNA and protein
® Requires very accurate identification of

® gsplice sites, translation & transcription starts & stops
# sites of regulation (transcription, splicing, etc.)

® Develop methods to integrate single site predictions

# usually HMMs

® Novel learning methods for structured outputs

DNA

transcription

pre-mRNA cap
splicing

mRNA

translation

protein

[ €XON — intron 1€XoN - intron 1€XON -intron 1€XON - intron T— exon i

ATG GT AG GT AG GT AG GT AG

TTG,TAA

TGA

UUG,UAA
AG GU AG UGA

AUG GU AG GU

c» E——

Aue UUG,UAA
UGA

" I

AG GU
poly#
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TFBS CpG

Pl

B / / / = 5' UTR Introns and

\ oa O 5 Coding Exons
© d / SS

POL Il binds to a rather vague region of ~ [—20, +20] bp

Upstream of TSS: promoter containing transcription factor binding
sites

Downstream of TSS: 5 UTR, and further downstream coding re-
gions and introns (different statistics)

3D structure of the promoter must allow the transcription factors to
bind

Promoter

|

e o o0
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10-30 bp 20-40 bp
CA T-rich or GT-rich

AATAAA

l cleavage

AATAAA CA i -OH ‘ T-rich or GT-rich i

l polyadenylation

AATAAA CA | AAAAAAAAAAA A

® Polyadenylation signal (AATAAA or variants) 10-30 bp upstream

® T-rich or GT-rich elements 20-40 bp downstream

® Transcription end is several hundreds of bp after 3’ cleavage site,
mechanism not yet understood
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Finding Intron-Exon junctions

window of ~ 150 nucleotides

CT...GTAGAG| TGTA..GAAGCT AG GAGCGC..ACCGT JACGCGT...GA

known splice site

® true sites: fixed-length window around splice site
® decoys sites: generated by shifting the window

AAACAAATAAGTAACTAATCTTT
AAGATTAAAAAAAAACAAATTTT
CACTCCCCAAATCAACGATATTT
TTAATTTCACTTCCACATACTTC

CGTTTCAACCATTTTGAG
AGATATAATAATCTAATT
AACACATCCGTCTGTGCC
AATCTCCAAAACCAACAC

=- Very unbalanced problem (1:200)
= Millions of points from EST databases
= Large scale methods necessary




Predict a sequence of binary decisions

DNA ACGAGCACGAGCTGGGAT ACGAGCACGAGCTGGGATGGGACGAGCCTGGGATGGGAGTCGTGATGGGAGTCGTAGTCGTTGGGATGGGAGTCGT

.

True gene model SR s R i 20 s 2 i =

e i L B &

Layer 1: SVM Signal Predictions

Tss J_”_LLL...‘_LLI.L._..I.L“J]”].“.[I].L.JI"II O PR
TS | | |
Acc | I . I I |

Stop | |
- | . 1 J

Ll I

Layer 2: Integration of features —
Y [ large margin:
‘ Go(x",y") > Go(x",y)

Score Y

G
o V‘y

www.mgene.org/web

15

10

Sp
E— 1/2(Sn + Sp)

Gene

Craig Eugene Fgenesh Augustus




61
Goal: Find sites of alternative splicing, conditions and regulating
genes

#® Understand differences be- -
tween alternative and consti- Lo
tutive splicing

® Predict yet unknown alterna- T T
tive splicing events

® Predict on newly sequenced
organisms

efg8

mgmt
Isg2
selEFf

-
a
£
S

clpr2

® Experimentally verify predic-
tions via RT-PCR.

Kianianmomeni et. al. Genome-wide analysis

of alternative splicing in Volvox carteri, 2014




® Genes are regulated by proteins called transcription factors
® Environment, e.g. metabolism (internal), temperature (external)

transcription factors
eukaryoticcells
el
et b i,

4 Aninsulatorcan swoptheenhancers |

et dled(‘l'G{namedb f
CECTC whidhcaus

4.,,,,,,

5 the addition of

gouptotec

https://en.wikipedia.org/wiki/Transcription_factor
Alon, An Introduction to Systems Biology, 2007

Extracellular

Cytoplasm

Tap42 ?
I Pph21/22
-' iz )

Cdes5/Tpd3):

fromattading tothe rsuator

complex makes it easier
RNA o a
start traseriting ' n prevents CTCE
‘tuming toff,
NG polymerass <cocrt-br\dng(a o) e e pmm.

Targets: GIn3, Msn2, elF2a, ...

Targeis: Gln3, Msn2, elF2a, ...

Lawrence et. al. Learning and Inference in Computational Systems Biology, 2010




naked duplex DNA

® DNA packed tightly in nucleus
® DNA wrapped around histones S

to form nucleosomes m el by fmaton
® Nucleosomes organised into
.28 |

Chromatln flbres 30nm solenoid

® Transcription accessibility
® DNA repair

85 &% extended form of
Y chromosome

UULocndensed section
of chromatin

mitotic
chromosome

https://en.wikipedia.org/wiki/Nucleic_acid_struc

"’:.f
http://dx.doi.org/10.1103/PhysRevLett.114.178102




EPIGENETIC MECHANISMS

ara affected by these factors and processes:
= Development (in utero, childhood)

# Environmental chemicals
= Drugs/Pharmaceuticals

* Aging

@ METHYL GROUP

HEALTH ENDPOINTS
+ Cancer

= Autoimmune disease

+ Mental disorders

+ Diabetes

EPIGENETIC
‘ FACTOR
/,

/

—

\

|| Methyl group (an epigenstic factor found
in some distary sources) can tag DNA

HISTOME TAIL

-

HISTOME TAIL

DHA accessible, gene active

Histones are proteins around which

Histone modification

The binding of epigenetic factors to histone “tails™
alters the extent to which DMA is wrapped around

DA can wind for compaction and DNA inaccessible, gene inactive histanes and the availability of genes in the DNA
gene regulation. to be activated.

https://theconversation.com/explainer-what-is-epigenetics-13877



DNA Positive strand, written 5’ to 3.
e.g. AATCGAAGTTA

RNAT = U
e.g. AAUCGAAGUUA

Amino acid 3 letters of RNA (codon) = amino acid,
20 letter alphabet.

Splicing pre-mRNA to mature mRNA

Transcription factor Regulate expression of gene,
through promoters and repressors

Epigenetics Methylation, Chromatin marks
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Genome wide association studies
Find genetic variation corresponding to an attribute of interest.

The search for genes
A very brief overview of molecular biology

Biological sequencing
The big data revolution in life sciences

® Identifying biomarkers
® Bottleneck: data analysis
® Open area of research
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solution gel slots containing DNA samples
. [ A
IIII
/

mc-vememcnf DMA

A C G T
longer
bands

® 1960s: DNA - properties, proto sequencing

® 70s-90s: Manual sequencing - Sanger, Maxam-Gilbert

® 90s: Automated Sanger - flourescent, clones, colony picking
» 2003: Human genome - 25 cents per 1000 bases

® 00s: NGS, Clusters - 454-Roche, Solexa-lllumina, lon Torrent
® lllumina HiSeq X Ten: 6 billion 150 base sequences in 3 days

http://phylogenomics.blogspot.com.au/2015/10/evolution-of-dna-sequencing-talk-2015.html
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Data volume

® HiSeqg X Ten: 12 GB per hour

» 700MB per human genome
~ 200GB reads

Work in progress

® Multiplexing - tag sequences
® Capture: Enrich a particular set

® Paired Ends: sequence from both
ends

® Small amounts of DNA
® Longer reads

Small sequencers

® Single cell sequencing: PacBio

® Real time sequencing:
Oxford Nanopore
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SO WHAT?




4 .t\-‘:’

Molecular Mathematics &  Computational
Biology Computer Science Biology
Desired M reduce to »| Solve inverse »

measurement sequencing Sequence problem Alelyzo

Creativity Chemistry & Statistics Biology
Ph'}fSIGS / \
I ?
) :;' YR ,.l” - Wyt~ Prip.e

P(f = (pt,1)) =

T
Z[r,l.r.m_lEA[I] Am - F:_:. " Walram " ©f|q.rm

Image from Lior Pachter’s ISMB 2013 keynote
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Analogy: Shotgun sequencing
Take many copies of a text, split at random points, reconstruct.

Alignment
® Dynamic programming
® Needleman-Wunsch and Smith-Waterman
https://en.wikipedia.org/wiki/List_of sequence_alignment_software
Assembly

® reference genome vs de-novo
® grouping: reads — contigs — scaffold
® Bridges of Kdnigsberg — de Bruijn graphs

http://www.nature.com/nmeth/journal/v9/n4/full/nmeth.1935.html
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Single Nucleotide Variation

® Recall two copies of chromosomes

® at every location: AA, AB, BB

® Noise free, high coverage = frequency = probability

® Probabilistic methods for maximum a posteriori estimation
® Correlations along the genome

https://en.wikipedia.org/wiki/SNV_calling_from_NGS_data
Structural variation

® copy number variation
® insertions, deletions
® inversion, translocation

http://www.ncbi.nlm.nih.gov/dbvar/content/overview/
Study cohort germline vs somatic mutations

http://www.bioplanet.com/gcat
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Multiple samples to estimate noise

Techical

® Effect of measurement instrument R
® Different days, researcher
® Usually same biological sample

Biological
® Effect of biological development

® Different individuals of same
“species” I ——

Original Studies Replications

Reproducibility crisis?
® Psychology: nttps:/ost.io/ezcuj

® Cancer biology: underway
http://elifesciences.org/collections/reproducibility-project-cancer-biology
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confounding
Common variable affecting two variables of interest.

salt water O red skin O
O

sun

batch effect
There is a hidden confounding variable for the effect,
e.g. time
® Randomisation: randomly allocate samples to cases/controls
® Stratification: age, gender, group, geography

Lambert, Black: Learning from our GWAS mistakes, 2011
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Methylation - epigenetics
® [dentify methylated bases
® Regulates gene expression
Chemistry

® Bisulfite conversion converts unmethylated C to U
® AACYGGTCMCCAGT
® AACMGGTCMUUAGT

Algorithm

® Align converted sequence to reference

® Need to disambiguate unmethylated C from T
» AACMGGUCMUUAGU

® E.g. latent variable models

http://www.epigenome.org/
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Chemistry Convert RNA to DNA
Gene Expression
® Recall: mRNA translated to proteins
® Which genes are expressed in what tissues at which levels?

® What are the regulators of a particular gene?
® How does treatment change expression (differential expression)?

https://www.encodeproject.org/

Splicing
Align expressed RNA to reference genome

A Mew cassette exon

B MNew retained intron

ccccc oe

http://biorxiv.org/content/early/2015/03/26/017095
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® Nucleo-Seq

® dsRNA-Seq » GRO-Seq
® DNAse-Seq

® FRAG-Seq ® Quartz-Seq
® Sono-Seq

$® SHAPE-Seq ® CAGE-Seq
® ChlA-PET-Seq

® PARTE-Seq ® Nascent-Seq
® FAIRE-Seq

$® PARS-Seq ® Cel-Seq
® NOMe-Seq

$ DMS-Seq » 3P-Seq
® ATAC-Seq

9 : » 9 :

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Bology ./ ComputerScience  Biology

BBBBBB

https://liorpachter.wordpress.com/seq/ M |—1 = H o |
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Association Study

A dOeraHI[IKL
ID3023
ID4454
ID7675
ID2283 Sequence Analysis
B!i!!!'b P——
Variation e

o SNP

o Structural

o Methylation
o Expression
@)




What is a biomarker?

How to measure?

Use adaptive experimental design to
identify important time series.

Busetto et. al. Near-optimal experimental design for
model selection in systems biology, 2013

What to measure?

Combine various sources of informa-
tion for robust decision making.

Macintyre et. al. Associating disease-related genetic
variants in intergenic regions to the genes they impact,
2014

Where to measure?

Use expert domain knowledge to con-
struct dynamical models.

Brodersen et. al. Generative embedding for model-
based classification of fMRI data, 2011




DATA
61

Machine Learning Open Source Software
mloss.org mldata.org
Do We Need Hundreds of Classifiers
to Solve Real World Classification Problems?
jmir.org/papers/vi5/delgadoi4a.html

Spoiler: No
Usability and Reproducibility

® (too much) focus on new algorithms
® Documentation, modularity issues

® Literate programming
rmarkdown.rstudio.com  yihui.name/knitr  jupyter.org

® Scientific computing workflows
galaxyproject.org  www.taverna.org.uk

Dream: App Bazaar for data science
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A Data Analytics View of Genomics
Genome wide association studies

® Find genetic variation corresponding to an
attribute of interest
® Hypothesis testing framework

® Batch effects and experimental design

The search for genes

® Glimpse of molecular biology S —
. . | |
® Machine learning on sequences pUENEER B

Biological sequencing s o
® Bottleneck is analysis ﬁ Ji \‘!
. . v T~ Compate Soenen Bty
$ Sequence assignment and deconvolution MM—I = { |

Please make your research open R |==ss
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http://www.ong-home.my/download/ai2015-genomics-tutorial.pdf
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