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We know how to do binary classification...

Muffin vs chihuahua Cinnamon rolls vs tails
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the Gadigal people, the
traditional custodians
whose ancestral lands

we’re meeting on today,
and pay my respect to their
Elders past and present.




@ Work in progress: find plastic degrading enzymes

PpEST: Aryl esterase
Enzyme — a short protein sequence, RGP AGLOCNLASMYVECSQQABAKVLLLGMKLPPAYGVRYITAFADY FIDLAEKCVSLYPEFLEGVGEVPGM
aCtS aS a Catalyst for a Chemical MQADGIHPAEAAQEILLDNVWPTLKPML
reaction. Represented as a string of
amino acid letters but has a 3D form.

Aim: we want to be able to find useful
enzymes that can degrade plastic (e.g.
PET).

20290 possible (substitution) variants!

Challenge — search space is VAST

Atoms in universe: 1020
Seconds since Big Bang: 10/
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@ CSIRO’s BioFoundry

* Engineering biology:
is the set of methods for designing, building, and
testing engineered biological systems

L/ R
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Hafna Ahmed U‘A,

Chie Ishitate Candice Jones
MPI Marburg

Adrian Marsh

Robert Speight

https://research.csiro.au/aeb
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Fithess landscape

A metaphor in evolutionary biology

* Each of the horizontal axes represents some
notion of sequence variation

* The vertical axis captures some property of
interest (so-called fitness)

* Open question how to represent ¢ R

Fitness N
Low High



@ Ouridea: Islands of fithess

* Desiderata: want to find only “fit” sequences
* Intuition: Many sequences are not viable,

a n d We Ca n n Ot m ea S u re t h e i r fit n eSS Aerial View of Seventy Islands, Mi?rovr.\esia, Palau

Active Generation

by Reinhard Dirscherl

» Goal: We want to generate from a (conditional) probability density

p(zly > 7)
Where x is the space of sequences and y is the fithess value
T is a parameter that identifies “fit” sequences
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Three messages

Class probability estimation to density ratios

Density ratio to Bayesian optimisation

Searching the space of densities




Two ways to represent binary classification

* Two densities P and Q, and a class prior D = (P, Q, 7T)
* A marginal density M, and a conditional probability 7D — (]\J7 77)
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Two ways to represent binary problems

* Positive density p(.’L‘ z = 1)
* Negative density p(xlz = —1)
* Class prior T:=p(z=1)

* Marginal density p(x)

* Class probability = conditional probability of positive
n(z) = p(z = 1|z)
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Density ratios

* Going from class probability estimation
to density ratio estimation

Aditya. Mn-on
* From Bayes’ Theorem Google Deepmind

V€ X n(z)  pl@lz=1)

L—n(@) plalz=-1) 1-=
* Hence the density ratio
plalz=1 _ ) 1-m
pzlz=-1) 1—-nx) =

Menon, Ong, Linking losses for density ratio and class-probability estimation, ICML 2016 @ I DATA I
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Linking losses

* Observe that the density ratio is a transformation of the class
probability estimate, where the analytic relation is

1l — 7 a
Upr(a) := :

T 1l —a

* There is a direct link between the losses of density ratio estimation
and class probability estimation

(o) = 20T ()

@ I DATAI



Linking losses

* There is a direct link between the losses of density ratio estimation

and class probability estimation

] Loss ?y(v) £ (v) T 1w)
* We analyse the properties of | -
. . KLIEP (3 — log v
imperfect estimates 1 " T+
LSIF —p? —
* Via a novel Bregman identity s S T
of a perspective transform Lo « e
. . Square (1+v)? (1—v)? 20 —1
* We provide a way to design e o .
Logistic og(l + e og(l+e ™ ”
new losses Lte
Exponential " e e

Menon, Ong, Linking losses for density ratio and class-probability estimation, ICML 2016
Nock, Menon, Ong, A scaled Bregman theorem with applications, NeurlPS 2016
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Three messages

Class probability estimation to density ratios

Density ratio to Bayesian optimisation

Searching the space of densities




Probability of improvement

* Bayesian optimisation is an adaptive experimental design approach
* Following Bayesian decision theory, optimise expected utility

{"ymp(y\:ﬂ,D) [u(y, 7_)]

* One utility is probability of improvement

BAYESIAN

uPI(y; T) i ]I(y > 7-) OPTIMIZATION




Probability of improvement = density ratio
* Expectation of Pl utility
{i‘ymp(ykc,D) [upl(y; T)]

* By the definition of expectation

[ 1> nptule D)y

— OO

_ / p(y|z, D)dy
Yy

=T

— p(y > T‘an)




Probability of improvement = density ratio

 The same as density ratio (by Bayes’ theorem)

p(y > 7|z)p(x) = p(xly > 7)p(y > 7)

* Observe that p(y > 7) isfree of @
* Therefore we have a density ratio

(zly > 1)
p(x)

X p
4“ywp(y|.:r:,D) [uPI(y; 7—)] X

Song, Yu, Neiswanger, Ermon, A General Recipe for Likelihood-free Bayesian Optimization, ICML 2022
Tiao, Klein, Seeger, Bonilla, Archambeau, Ramos, BORE: Bayesian Optimization by Density-Ratio Estimation, ICML 2021 &




Probability of improvement = binary classifier

e Score Class probability
fo(z) : X =Y n(z): X = 0,1
* Thresholding the score
z: =y >71)€{0,1}
n(z) = p(z = 1{z) = p(y > 7|z)

* Probability of improvement
L (y|z) e (y; 7)) = p(y > 7|7)
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Three messages

Class probability estimation to density ratios

Density ratio to Bayesian optimisation

Searching the space of densities




@ :0ur idea: Islands of fitness

* Desiderata: want to find only “fit” sequences
* Intuition: Many sequences are not viable,

a n d We Ca n n Ot m ea S u re t h e i r fit n eSS Aerial View of Seventy Islands, Mi?rovr.\esia, Palau

Active Generation

by Reinhard Dirscherl

» Goal: We want to generate from a (conditional) probability density

p(zly > 7)
Where x is the space of sequences and y is the fithess value
T is a parameter that identifies “fit” sequences
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Variational Search Distributions

(a) argmax, y(x) (b) S (€) F
Find the fittest Set of viable Ground
sequences truth

https://arxiv.org/abs/2409.06142
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Flexible surrogate models

* Build on advances in generative modelling
* Minimise reverse KL divergence of model to unknown density

argmin gDy, Lq(z|9) || p(zly > T) |

 Surrogate q(x|)
+ Islands of fitness p(z|y > T)
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Expected log probability of improvement

* Expanding KL divergence and applying Bayes’ theorem

- q(z|¢ '
argming ;1) [log 1(9(:‘1:)) logp(y > 7|x)

* Recall probability of improvement

argma,Eq (o1 0g e (4;7)] — i [ a(2l9) || p(a)




Solving active generation

* Frame online black box optimization
as sequential learning of conditional generation

* In each round of the sequence, there are two steps
» Fit a binary classifier (CPE), z := 1|y > t] indicates “good”
mo(x) ~ p(z = 1]x)
‘ Update the generative model

O argrgnax Leipo (¢, 07)
q

* Since we use CPE, direct generalisation to multi-objective
optimisation and finding Pareto-sets

@ I DATAI



Theoretical analysis
* The learned distribution approaches the true distribution

Theorem 2. Let assumptions [ to 5 hold. Then VSD equipped with GP-PI approaches the level-set
distribution at the following rate:

Dlp(x|y > 7. D) |Ip(xly > 7. f.)] € Op(t~'/?). (69)

* We discover (in expectation) the true fit sequences (hits H)

Corollary 1. Under the settings in Theorem 2, we also have that:

E[[Hr — H7|] € O(VT).

@ I DATAI
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Generating unrolled images
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Active generation - desiderata

Requirements Desiderata

 R1 - Rare feasible designs * D1 — Guaranteed convergence

* R2 —Sequential non-myopic * D2 — Gradient based
candidate generation optimisation

* R3 — Discrete search * D3 — Scalable predictive

* R4 — Batch generation of models

diverse candidates
e R5 — Generative models

@ I DATAI



Contributions

1. Requirements and desiderata for finding islands of fitness

2. Batch active generation objective over a (practically) innumerable
discrete design space as an instance of variational inference

3. A modular algorithm, VSD, which solves this objective
4. Theoretical bounds, generalisation to multi-objective setting

5. VSD works in practice ©

Steinberg, Oliveira, Ong, Bonilla, Variational Search Distributions, ICLR 2025
https://arxiv.org/abs/2409.06142
Steinberg, Wijesinghe, Oliveira, Koniusz, Ong, Bonilla, Amortized Active Generation of Pareto Sets, NeurlPS 2025 -

https://arxiv.org/abs/2510.21052 | E1ATA |
N~
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Ways to use a binary classifier chengsoon.ong@anu.edu.au
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Class probability estimation to density ratios 30

Mare Peter Deisenroih,,
A Mo Faisal™
Cheg Saen Dng

Density ratio to Bayesian optimisation

Searching the space of densities




Early results - peroxygenases

* Peroxygenase is a catalyst
that inserts an oxygen atom

Caralyst

OAO/“

(5)-2

* Want to engineer specificity into unspecific peroxygenase

* Enzyme library is screened
using microfluidic sorting

* Active generation consistently
outperformed direct selection
from the same screening data

Ultrahigh throughput screening to train generative protein models for engineering specificity into unspecific peroxygenases / /‘.

Nair, Steinberg, et. al.
https://www.biorxiv.org/content/10.1101/2025.11.02.685536v1
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Active Generation

Active generation: find best ¢* for generating

“good” (or best) x )
/ \ Generate good candidates instead of

selecting from a list

mKTTTL...LFLVGALTQ \

MKTTTL..LFLVGALTQ | 1.2 MKTFTL...LFLVGTLTQ

MKTTTL..LFLVGTLTQ | 3.6 MKTTIL...LFLVGTLTQ

Predictor + gene rator MKTSTL...LFLVGTLTQ

MKTTTL..LFLVGALTT | 0.3 MKTTTL...LFLVGTLTQ
learning

MKTTTL...LFLVGALTT
N\ )

Labelled Jo\ o
Data \ “ o / Unlabelled data
T generation,

design is generation

Can “select” from a vast number of enzymes :
| Build + T
(e.g. 20%%9), since they are generated uild + Test

. : Lo -~
we are not doing latent space optimisation! | DATA
61
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On finding good experiments
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Better measured values or better models

m Adaptive
ey EXperimental
w Design
| % BAYESIAN
f 1 OPTIMIZATION
- ROMAN GARNETT

04

U Improve output

£ W ¥
o 3

:
3
A, Bandit R
t 5 Ob_serve + estim_ate AlgOrltth
: Optimal

§ ; experimental
: design
f
E 4
%

Recall that we can use a machine
learning predictor in two ways:
1. The parameters of the model
2. The output values on a test set
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Value, need, cost

A

Natural History Collections at the Crossroads:

Value of Information
Expected information gain - percentile rank

Cost of Information
Remoteness areas by grid

Shifting Priorities and Data-Driven Opportunities
Forbes, Thrall, Young, Ong, Ecology Letters, vol 28, no 8, 2025
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Judea Pearl @

ML is not only about predictions B{E‘:k

of =
Predictions vs Decisions vs Actions Wh‘y
The NwSccncc
of Causc and Effect
A, AutenCovrmnen @) H';'tt.ﬁﬂs cimate Acton

Thu 5 Oct _',f: 9°C 16°C
0

Possible rainfall: 0to 6 mm Chance of any rain: 80% HINEANEN
Fri 6 Oct 1/: 9°C 15°C
K

Possible rainfall: 0to 1 mm Chance of any rain: 70% BEREEEECO0

SI7OCT(@ 7°C 16°C

Predictions  Will it rain tomorrow? Jam on M1°? Risk in 20507

Decisions Take umbrella? Train or taxi? Plan for net zero

Actions Does not affect weather  Affects traffic! Want wrong predictions!
When accurate prediction models yield harmful self-fulfilling prophecies, Patterns, 2025 | DATA
https://doi.org/10.1016/j.patter.2025.101229
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Pragmatism in International Relations

Toni Erskine, ANU

Xueyin Zha, ANU
DEMOCRACY

AND
SOCIAL ETHICS

* Need a way to say “good” and “true”

EXPERIENCE
AND NATURE

PhD thesis: Normative Truth-Seeking from the Ground Up:
Experiential Pathway to Global Al Governance

UNOFFICIAL



ANNE HELEN TOOMEY

We should learn from each other

* Need more than data science Science

o . Impact
* How to foster cross disciplinary projects? P

. n h d h t How to Engage People,
S a p e re S e a rc e a I I l S Change Practice, and Influence Policy

IEEE TRANSACTIONS ON TECHNOLOGY AND SOCIETY

Four Compelling Reasons to Urgently Integrate Al
Development With Humanities, Social and
Economics Sciences

Iadine Chades™, Melanie McGrath™, Erin Bohensky, Lucy Carter™, Rebecca Coates™, Ben Harwood,
Md Zahidul Islam, Sevvandi Kandanaarachchi*, Cheng Soon Ong™, Andrew Reeson™,
Samantha Stone-Jovicich™, Cécile Paris*, Mitchell Scovell™, Kirsty Wissing"”, and David M. Douglas

Position: We need responsible, application-driven (RAD) Al research

. . .. . Sarah Hartman' Cheng Soon Ong?® Julia Powles*” Petra Kuhnert'
Opportunities and Challenges in Designing Genomic Sequences

Mengyan Zhang'? Cheng Soon Ong 2! @ I DATA I
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