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Fit a model to data

Estimate a Gaussian for each class conditional
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Build a classifier
Compute the posterior probability of blue plus
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What is Machine Learning?

Machine Learning is about prediction

- Examples/covariates/features Llyeoeydp X
- Labels/annotations/target variable
® Yiy,-- -5 Yn o~ y
Predictor

fw(lx) : X =Y

Estimate the best predictor = training

No mechanistic model of the phenomenon

There are many examples

The outcomes (labels) are well defined (usually binary)
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Data lifecycle

1. Can | load your data using pandas or numpvy?

Confounders, missing values, scale, units, encoding

Define the problem you want to answer:

* The business/scientific problem
* The performance metric
* The model for the predictor

4. Run sklearnor statsmodels (machine learning part)

5. Convert predictions into human friendly form for decision making
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Prediction # understanding #+ taking action

* How can we use prediction to help humans perform discovery?

fw(x) : X =Y
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Human in the Loop Machine Learning

Figure 1. Hype Cycle for Artificial Intelligence, 2018
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What is scientific discovery?

Observation

Francis Bacon,
credited with the modern
scientific method

Experimentation




Scientific discovery with machine learning
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fw(l@) : X =Y

Assume that domain knowledge is captured by a predictor

* Use predictor to decide where to measure (ABCDE)
(A) Active Learning

(B) Bandits / Bayesian Optimisation

(C) Choice Theory

(DE) Design of Experiments
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A — Active Learning

Want to build a classifier without paying for a lot of labels
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A - Active Learning

* Choose a particular example to label using heuristics

Annotator assumed to provide ground truth

Examples:

Uncertainty sampling

(sample near the decision boundary,
or maximal variance)

Committee of classifiers
(where they disagree)
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B — Bandits / Bayesian Optimisation

Unobserved truth , Observe + estimate
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B — Bandits / Bayesian Optimisation

Select a choice from a set of actions. Maximise reward/payoff from each action

Simple algorithms with theoretical guarantees

Manage uncertainty with repeated sampling
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C — Choice Theory

zoobles ~ zoobles Normalised ranks
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C — Choice Theory

* Main idea
- Aggregate set of ranks into one ordering (combine predictions)
- Economics and social science, impossiblity theorems

Equivalent representation of ranks

Ordered list of n objects selected from Q

List of values [1, ..., n] (can be normalised to € (0, 1))
Permutation mapping R: Q - (0, 1)
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DE - Design of Experiments

* Glucose metabolism in Yeast
- Multiple possible models
- Design biological experiments that maximise

information gain |

Busetto, Hauser, Krummenacher, Sunnaker, Dimopoulos,
Ong, Stelling and Buhmann.

Near-optimal experimental design for model selection in
systems biology , Bioinformatics 2013
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What is a model?

No Model ODE and parameters
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Finding good models

a priori a posteriori
belief state belief state

high uncertainty
+ d

update

(low gain)

=
=

high uncertainty

probability

>
£
Q
©
Q
e
—
o

S I 1 I

X N B %
s 3 5 7
o o o S
§ § S §

=

low uncertainty

high uncertainty
+ d

update
(high gain)

probability
probability

:

Moge, ,
”’Od@,2
”70%,3
Mog, )

@ I DATAI



Optimised experimental design (l)

Measurements

Experiments produce readouts y(t;),
grouped into datasets Y, for an experiment .

* Bayes rule
- For a particular model f, (taking care of parameters)
p(Yzlf ()
. Y.) =
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Optimised experimental design (ll)

Information gain

We want to take measurements that change model
probabilities

Dir (0 (f1YDI|p(H)) = X p(fIY) logp(f 1Y) /(f)

Marginalise over possible outcomes

Maximise expected information gain

» argmax;Ey_ Dy, (p(f1Y)l|p(f))
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Scientific discovery with machine learning

fwl@) : X =)

* Domain knowledge to Data
- Human in the loop ML
- Where to measure

* Use predictor to decide where to measure
(ABCDE)
Active Learning
Bandits / Bayesian Optimisation

Choice Theory

Design of Experiments _
g |

~N 7~




[ TOW CENTER

Data

Jonathan Stray

Machine learning:

the power and promise
of computers that learn
by example

THE

ROYAL
SOCIETY

MACHINES

OF LOVING GRACE

THE QUEST
FOR COMMON
GROUND

BETWEEN
HUMANS AND
ROBOTS

MATHEMATICS o1
MACHINE LEARNING

B

Marc Peter Deisenroth



I DATA
\ 7~

THANK YOU

Data61 CSIRO

Cheng Soon Ong

e cheng-soon.ong@data6l.csiro.au
w ong-home.my

www.data6l.csiro.au



