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Datab61

® NICTA merger
® Part of CSIRO, focus on ICT
® Approx 1000 researchers, PhD students and university staff
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RAID c——————) IR

Are there any more sources?

id:137 chr1:25089081 rs6657823 probe_group:294 -
id:138 chr1:25195364 1510794668 probe_group:293
16:139 chr1:25198424 rs4649042 probe. groupB03 —

id:140 chr1:25205649 1312403486 probe_group:254
id:141 chr1:25279261 rs6702929 probe_group:291 -
1d:142 chr1:25314133 rs2660353 probe_group:296 Tl

101143 chr1:26217614 1512074420 proe_group:303

Eracellular

group:t
i0:145 onr1:26347026 154281320 probe._group:t -
10146 chr1:26585184 1512137896 probe_roupB04 —
161147 chr1:26756098 rS3816540 probe. group:B05 —
1d:148 chr1:28081892 rs3766398 probe_group:12
1d:149 chr1:28081953 rs3766400 probe_group:12
10150 chr1:29402530 1512032476 probe_roupB06 —
6:151 chr1:29558377 16426356 prove._group2s
10162 chr1:20692062 15212306 probe_group807 —
id:153 chr1:20604810 rs6671744 probe_group:320
10154 ohr1:29937796 510759234 probe_group319. T
16:155 chr1:30070380 15993245 probe_growp3te
6:156 ¢hr1-30081331 rs749663 probe_groupi7es —
1d:157 chr1:30000235 1310798896 probe_group:25
16:158 chr1:30180162 1174838 probe_Group1798

6159 chr1:30576065 rs6425951 probe. group:788 —

Cytoplasm

® o
Targets: Gin3, Msn2, elF2a,
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What is machine learning? @
Machine learning is about prediction
Examples/features | z1,...,2, ~ X
Labels/annotations | y1,...,y, ~ Y
Predictor fowlz) X =Y

Estimate best predictor = training
Given data (z1,v1), .. ., (xn, yn), find a predictor fy(-).

® No mechanistic model of the phenomenon
® There is relatively large amounts of data (examples, = usually R?)
® The outcomes (labels, y usually binary) are well defined

Prediction # understanding
How can we use prediction to help with scientific research?
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Today: focus on the predictor @”“%

fw(z) : X =Y
Label: Finding black holes

Feature: Finding genetic associations

Predictor: Finding good experiments

Discuss challenges to applying machine learning
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Not standard binary classifcation IE”}U@

fw(z) : X =Y
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Finding black holes o @

Goal: Automate radio cross-identification, a problem in astronomy
Too much data

® Collaboration with ANU, ANTF, CAASTRO
® Square kilometer array (South Africa and Australia)

Labelled by non-experts

® Convert object localisation to binary classification
® Deal with label noise
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Radio cross-identification oA

Optical Infrared X-ray Radio

Images of Centaurus A at different wavelengths.
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The real data a1 @

The same patch of sky in both radio (left) and infrared (right)
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v
Localisation as binary classification 15" | @

Galaxy catalogue as candidates
Could scan a patch across the sky

Classify pairs of images

.n positive
.. negative

Features: Neural network image features, fluxes, radial distance
https://github.com/chengsoonong/crowdastro
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Crowdsourcing labels e

Radio Galaxy Zoo:
citizen science project to cross identify radio galaxies

Radio RA0 m————————————) IR R0 e———) 1R

Click on any radio contour or pair of jets Click the associated infrared source(s) Are there any more sources?

Radio Galaxy Zoo
About 100000 of 177000 image pairs labelled.
® 5 volunteers per pair for compact sources
® 20 volunteers per pair for complex sources
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How to find black holes

Prior catalogues
® Heuristic rules + expert human effort
Norris et. al. 2006

® Annotation based on physical models
Fan et. al. 2015

® Use set where both agree as gold standard
Many labels to one binary label

B | ogistic regression from sklearn

» Majority vote

® EM style algorithm to estimate ground truth
Raykar et. al. 2010, Yan et. al. 2010

Latent variable model

® Noisy labels = ground truth + biased coin flip

-~
il
N~

Cheng Soon Ong: Machine Learning for Scientific Discovery, Page 13



Results

100

95

Balanced accuracy (%)

75

70

90 |

85

80|

LR(Norris) |

LR(Fan) +

LR(RGZ-MV) |

Raykar(RGZ-Top-50) |-
RGZ-Raw-MV [

Conclusion: Features meaningful, but pipeline can be improved.
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Side note about label noise a1 @

Latent variable
Assume that there is a hidden ground truth label, and model it.
Alger, Banfield, Ong, (in preparation)

Learning with label noise
During training, pretend that labels are noiseless, and assume that
the learning algorithm takes care of it.
Menon, van Rooyen, Ong, Williamson, ICML 2015

Model evaluation
How do we measure performance without ground truth?
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What are good features? o @

~N 7~

fw(z) : X =Y
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~
Genome wide association study & /@

Case-control studies
A cohort of sick individuals (cases) and healthy individuals (con-
trols) are genotyped and their corresponding binary phenotype are
recorded.

We use the framework of hypothesis testing

Hypothesis testing Given a case control study, test whether a particu-
lar SNP is associated with the phenotype.

Good biomarker? If difference is statistically significant
—
SNP is associated with the phenotype.

lesllelsels]

15 15 50 60 10 50 15 10 60 10 60

-II--II++I+I

‘ .
B B £ f EE F E E B B I

Cheng Soon Ong: Machine Learning for Scientific Discovery, Page 17



Epistatic Interactions % @

Genome Wide Interaction Search (GWIS)
Consider the association of all pairs of genotypes to phenotypes

Large search space

$® 5000 individuals, 500,000 SNPs (WTCCC)
® Need to tabulate 125 billion contingency tables

Classification based analysis
® Focus on SNPs in case control studies ~

® New statistical tests Sy A
® Consider specificity and sensitivity :”“:)‘)”
® Gain over univariate ROC o
® CPU (= days) and GPU (= hours)

® Store the top 1 million pairs " st

Web service
http://gwisl.research.nicta.com.au/
Goudey,...,Ong,...,Kowalczyk, BMC Genomics, 2013
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p-values o

Interpreting p-values
Is 10~V probability of association very significant?

Quote
but a reliable method of procedure. In relation to
the test of significance, we may say that a phenomenon
1s experimentally demonstrable when we know how to
conduct an experiment which will rarely fail to give us a
statistically significant result.
Fisher, The Design of Experiments, 1947, p. 14

Stability of scoring
We consider p-values as a score of association.

® How stable is this score if we repeat the experiment?
® How do we combine scores?

Challenges

® Scores available for only the top-k examples
® Scores from different sources not calibrated

Cheng Soon Ong: Machine Learning for Scientific Discovery, Page 19



~
How to represent ranks? i@

OPEN HOLE

Multiple ways to represent ranks

® Ordered list of n objects selected from

® List of values [1,...,n] (the ranks of the object)
® Normalised ranks € (0,1)

® Permutation mapping R : Q2 — (0, 1)
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v
Measuring Overlap @

Motivation
Given a set of replicated experiments, how do we measure overlap?

Examples

® Perform repeated splits of the data
® Experiments on different cohorts
® Multiple sources of information

Challenges

® Scores available for only the top-k examples
® Scores from different sources not calibrated
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Signal and Noise

2000

1500

1000

rank(y)

500

Frank copula (sample)

o @

~N 7~

1 1 . L
L 1 1 [
500 1000 1500 2000
rank(x)
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Set based overlap

Running example (6 objects)
A:[CL?b?C?d?e?f]
B:[a’7b767f7c7d]

Jaccard Index
|AN B

overlap =
P= A0
Measuring stability

® Easy to compute

® Works for top-k lists
Consider the top-3 lists from above:

Jaccard index =

{a, b}

® |[gnores the order given by scores

{a,b,c.et| 2

Cheng Soon Ong: Machine Learning for Scientific Discovery, Page 23



Spearman’s p | @

® Similar to Pearson’s correlation for the measure of dependence
® Spearman’s p is a correlation measure between ranked lists

)

p(A, B) = il —ra)ry — 7p)
VI —rap Sy — )
® Running example:
p(la,b,c,d,e, f],[a,be, f,c,d]) = 0.543
(Jaccard index = 1)

® Need the same elements in A and B

p(la,b,c|,la, b, e]) ?

Cheng Soon Ong: Machine Learning for Scientific Discovery, Page 24



v
Spearman’s y on top  lists @

Simple idea
Define Spearman’s p for top & lists

Key observation
Any elements in list A that do not appear in list B must have a rank
higher than the number of elements in B

Running example (top-3)
A=la,b,c,d, e, f] and B =la,b,e, f,c, d]
As =la, b, | and Bs =a, b, €]

B A

Agg = |a, b, c, €] and ng = |a, b, e, ]

B

A
Spearman’s p = p(Agj, Bgf}) = 0.8

Cheng Soon Ong: Machine Learning for Scientific Discovery, Page 25



'
Spearman’s y on top  lists i@

Extend the list
We expand lists A and B to complete rankings over the same set of

elements, denoting them as A% and B respectively.

The missing values in the extension are given the average rank.
Running example (top-4)
Ay =la,b,c,d and B, = [a,b,e, f]

% 4
A7 =1[1,2,3,4,5.5,55]  and By~ =][1,2,5.5,5.5,3,4]
Makes no assumption about the order of the unranked objects
Other possible imputation approaches
® Optimistic
® Worst case

Bedd, Rawlinson, Goudey, Ong, PLoS ONE, 2014
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Signal and Noise
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Spearman’s p

o @

~N 7~

1.0F

Spearman's p

frank copula §=15.0, k=500, §=0.2
1 1 ]
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Simulate two cohorts by splitting IE”;I D

Cross validation stability for raWTC-GSS

1.0

x  bivariate

Spearman's p

" " " PR " " " PR | PR " " " PR
10t 102 103 10* 10°
Top k GWIS pairs

Bedd, Rawlinson, Goudey, Ong, PLoS ONE, 2014
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Measuring Overlap a

Motivation
Given a set of replicated experiments, how do we measure overlap?

Challenges

® Scores available for only the top-k examples
® Scores from different sources not calibrated

Model

® Ranked list Instead of just using set intersection, we can use
the scores from GWIS to order the results

® top k Traditional methods (Spearman’s p) requires ranks for
the whole list. We have incomplete information, but we know our
ranks are the top ones.

® Multivariate  Textbook Spearman’s p is for computing correla-
tion between two ranks. We want to compute the correlation be-
tween multiple ranked lists.
Bedd, Ong, JMLR (to appear)
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~
Multiple replicates i@

Cross validation stability for raWTC-GSS

1.0
e optimistic

m  empirical
% bivariate

0.5}
S
2] .
-C .
e E
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o |
0 :
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Top k GWIS pairs
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DATA
*-Seq @
® Nucleo-Se
® dsRNA-Seq 9 8 GRO-Seq
® DNAse-Seq
® FRAG-Seq ® Quartz-Seq
® Sono-Seq
-Seq -Seq
» SHAPE-S ® CAGE-S
® ChlA-PET-Seq
® PARTE-Seq ® Nascent-Seq
® FAIRE-Seq
® PARS-Seq ® Cel-Seq
» NOMe-Seq
» DMS-Seq B ATAC-S ® 3P-Seq
-Se
o : ° d o :

https://liorpachter.wordpress.com/seq/
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Integrating different sources of data IE‘“;I e

Association Study

EEEEEERDEED
ID3023
ID4454
ID7675 _
ID2283 Sequence Analysis
Pr—.
Variation -
o SNP

o Structural

o Methylation
o Expression
O
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Rank aggregation o @

Modeling using Spearman’s correlation

Stability of feature selection
How to measure overlap?

p(Ry, ..., Ra)

Rank aggregation
How to combine different sources of information?
Macintyre, Yepes, Ong, Verspoor, Peerd, 2014

Cheng Soon Ong: Machine Learning for Scientific Discovery, Page 34



Optimal aggregator: geometric meaﬂ%ﬁi%

How to combine different sources of information?
We maximise multivariate correlation

R* = arg mgxp(R, Ry, Ry, ..., Ry).

Theorem The aggregator that maximises multivariate Spearman’s cor-
relation is the product of the normalised ranks.

Use the geometric mean

NOT pairwise correlation
Instead of decomposing the association into a combination of pair-
wise similarities p(R, Ry), p(R, Ra), ..., p(R, Ry).

Learning weighting of experts
We can also do supervised learning to rank

Bedd, Ong, JMLR (to appear)
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What are good biomarkers? @
leallilzels]

£ £ £ F F F F -!_ F ¥ T &=

£ + = £ = £ £ +£ £ £ = =

Genome Wide Association Studies

® Which mutations are associated with tall poppies?
® [dentify biomarkers with hypothesis tests

Finding stable biomarkers

® Split cohort into two (cross validation)
® Investigate rank correlation between scores

Integrating information via ranks

® Multivariate Spearman correlation using copulas
® Geometric mean is the optimal aggregator

Cheng Soon Ong: Machine Learning for Scientific Discovery, Page 36



fw(z) : X =Y




Active Learning / Expt. Design IE”;I S

Use predictor to identify good candidates

® Annotate top-k items
® Confidence interval improves performance
® Explore - exploit tradeoff

Krause, Ong, NIPS 2011

Finding black holes and redshifts

® Machine learning to classify images
® Show 10 candidates to expert daily

Collaboration with ANU, ANTF, CAASTRO
Glucose metabolism in Yeast

® Multiple possible models

® Design biological experiments that
maximise information gain

Collaboration of ETHZ with SystemsX Switzerland
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What is a model? " @

\ /
No. Maodel ODE and parameters
G =6,G+ 0,
P ] ki : i
I G 6, = —k = (=109 % 0.11) - 10
. ” 6;=P =85+1.10
(7 | e
G=0,G+01+0s
1
! O = —k = (—1.44 + 0.35) -
- ' ks . ki (—1.44 + 0.35) 111
P () 0 = —kg = (9.15+ 4.0)- 102
%{ G | - s = P =11.343.1
e ) ki
T G=0G+0,X+0,
2 v :
‘ I 1 g X=0X+1
S
g g 0, = —ky = (6.50 £ 0.73) - 10~
P G ¢ l B2 = —kaks = (—9.10+1.73) - 107*
— G }—: Oy =P = 5.97 +0.70
ky 0y = —ka = (—1.01 £0.16) - 10"
|‘ ! | A‘_' e ) k_i (1‘ = (U| .\j(; + U|
\ ) [’_ X =6;X + 631
“ X=Ifk
Vi ' 8y = —(ky + ks) = (—4.90 £ 0.97) - 107?
o ke \ 02 = —ky = (—9.10 + 1.20) - 1072
y_ | guman b g Go=ha(kts) =(896:188). 107
= | —— @s = Bo = 4,42 4+ 0.74
- ks . o l;u E

Bergman insulin dependent glucose metabolism model.
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TOR pathway " @

Extracellular

Cytoplasm

| Tap42 l
| ~( pph2122 )

Pph21/22 Cd

/Tpd3

O

3
(Targess: Gin3, Msn2, elF2a, (j) »( Targets: Gin3, Msn2, ¢IF2a, ... )
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Finding good models IE“T@

a priori a posteriori
belief state belief state

high uncertainty high uncertainty

-+

. . update . .
0 (low gain) 0]
X 2 B % X N W o
s 3 3 7 g 3§ & 7
(o] o (o] (o] o o o o
g = & & & = = =

probability
probability

high uncertainty low uncertainty

-+

BB 002
0 (high gain)
3 N & XN
5 & 5 0§
£ £ £ £

probability
probability

S M B 3
g g 5 7
S S S S
S § g g
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Optimised experimental design @Tj;l @

Measurements
Experiments produce readouts y(¢;),
grouped into datasets Y, for an experiment .

Bayes rule
For a particular model f, (taking care of parameters)
p(Yz|f)p(f)
Y.) =

Information gain
We want to take measurements that change model probabilities

Dicrlp(f[Yo)llp(£)] = Y p(f1Yx)loga p(f[Yz)/p(f)

fex

Marginalise over possible outcomes
Maximise expected information gain (tough computational problem)

argmax By, Dy r[p(f|Yz)||p(f)]

7
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Experiments, experiments, ... o @

What is a biomarker?

How to measure?
Use adaptive experimental design to
identify important time series.
Busetto et. al. Near-optimal experimental design for
model selection in systems biology , 2013

What to measure?
Combine various sources of informa-
tion for robust decision making.
Macintyre et. al. Associating disease-related genetic
variants in intergenic regions to the genes they impact,
2014

Where to measure?
Use expert domain knowledge to con-
struct dynamical models.
Brodersen et. al. Generative embedding for model-
based classification of fMRI data, 201 1
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A more philosophical section... @

fw(z) : X =Y
Label: Finding black holes

® Exist physical models, we directly use images
® There is relatively large amounts of data (examples)
® Object localisation with crowd labels

Feature: Finding genetic associations

® No mechanistic model of the phenomenon
® High dimensional low sample size
® Stability of feature selection

Predictor: Finding good experiments
® Partial mechanistic model of the phenomenon
® Estimate the expected information gain

Discuss challenges to applying machine learning
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Scoring candidates - ABCDE a

Active Learning
® Choose a particular example to label using heuristics
® Annotator assumed to provide ground truth

Bandits
® Select a choice from a set of actions

® Simple algorithms with theoretical guarantees
® Manage uncertainty with repeated sampling

Choice theory

® Aggregate set of ranks into one ordering

® Economics and social science, impossiblity theorems
Designing Experiments

® Choose a set of trials to measure

® Optimisation algorithms with theoretical analysis
® Information theory, real random variables
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ML Open Source Software o @

~N 7~

Wider adoption of methods

® Domain experts can use machine learning core
® Available for teaching

Scientific reproducibility

® Fair comparison of methods
® Access to scientific tools

Community growth

® “Given enough eyeballs, all bugs are shallow”
#® Combination of advances JM‘-R

mloss.org mldata.org

Cheng Soon Ong: Machine Learning for Scientific Discovery, Page 47



Plug and Pray o @

Machine Learning Open Source Software
Do We Need Hundreds of Classifiers
to Solve Real World Classification Problems?
jmlr.org/papers/vi5/delgado14a.html
Spoiler: No

Usability and Reproducibility

® (too much) focus on new algorithms
® Documentation, modularity issues

® |iterate programming
yihui.name/knitr  jupyter.org

® Scientific computing workflows

galaxyproject.org

Dream: App Bazaar for data science
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Bumpy road to data science o

Two classes of objects
Data
images, counts, raw sensor data, output of simulation, results
Analysis
visualisation, user interface, predictors, observational statistics
Multi-sided platform

® Decentralised architecture, not walled garden

® Enable direct interaction between data owner and analytics sys-
tem

O Network effect: each new entrant benefits from whole network

Not just tech people
Domain experts, data managers, project management

Cheng Soon Ong: Machine Learning for Scientific Discovery, Page 49



Wish list @

o000 000 00

We need an open federated framework for scientific discovery

Provenance, trust and reliability

Management of legal rights

Uncertainty propagation

Confidentiality and privacy

Complex workflows

Late binding ontologies

Cross organisation, jurisdiction, technical boundaries
Decouple technique from problem

No proprietary control

*-as-a-service
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One more challenge oD

McCulloch and Pitts, 1943

Multilayer perceptron

N
A+ K
™\ AN\
@ :
~ NS DT
N oA+ f i P
Ve /\ % ~_/
(4+./)
N NN /
sy
_

Deep neural networks

32 x 32 32 x 28 x 28 32 x 14 x 14 32 x 10 x 10 32x5x5 800

1 (= |

I ———— 1 —=>o

B/

4 x 4 convolution 2 X 2 max pooling 4 x 4 convolution 2 x 2 max pooling
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One more challenge

McCulloch and Pitts, 1943
Multilayer perceptron
Deep neural networks
Today’s ML systems

Black Box

classifier

o @

~N 7~

How to analyse two systems?

~

Black Box
classifier

/V
/V

Black Box
classifier
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Conclusion L @y

Prediction # understanding
How can we use prediction to help with scientific research?

Three extensions

® Not standard binary classification fy(z) : X — Y
® What are good features? fy(z): X —Y
® What to measure? fy(z): X —Y

Plug and pray

® Software, software, software
® Build the road and rail for data science
® Understand combinations of machine learning components

Cheng Soon Ong: Machine Learning for Scientific Discovery, Page 53



Thank You o

Prediction # understanding
How can we use prediction to help with scientific research?

Three extensions

® Not standard binary classification fy(z) : X — Y
® What are good features? fy(z): X —Y
® What to measure? fy(z): X —Y

Plug and pray

® Software, software, software
® Build the road and rail for data science
® Understand combinations of machine learning components

Please make your research open

www.ong-home.my
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Copulas o @

Intuition
For continuous random variables, copulas model the dependence
component after discounting for univariate marginal effects

Probabilistic definition
Let U, ..., U, be real random variables ~ U([0, 1]).
A copula function C : [0, 1]* — [0, 1] is a joint distribution

Co(u, ..., uqg) = P(Uy < up,y...,Uzs < uyg)

The same Gaussian copula function
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Copulas and Spearman’s p

Spearman’s p can be expressed in terms of the copula

p(A, B) = 12/ C'(u, v)dudv — 3
[0,1]?

Empirical copula

Cl(u,v) = ﬁ S 1(R(x) < u, S(x) < v)

€

Why do the math?

® Unclear how to extend formula for Spearman’s correlation.

® Multivariate distributions = multivariate copula.
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Multivariate Spearman’s p oD

A multivariate extension of Spearman’s p
For a d dimensional set of random variables u, the multivariate
Spearman’s p is given by

o(Ry,...,Ry) = Q(C,m) = h(d) (zd /[O p 7(u) dC/(u) — 1) |

where
d+1

20 — (d+1)
Empirical multivariate Spearman’s corelation

h(d) =

20
pulRy, . Ra) = h(d) | = > TR -1

r j=1

No negative correlation
As the number of dimensions increases, the lower bound of Spear-
man’s p tends to zero
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