
Education

Support Vector Machines and Kernels for Computational
Biology
Asa Ben-Hur1., Cheng Soon Ong2,3.¤, Sören Sonnenburg4, Bernhard Schölkopf3, Gunnar Rätsch2*

1 Department of Computer Science, Colorado State University, Fort Collins, Colorado, United States of America, 2 Friedrich Miescher Laboratory, Max Planck Society,

Tübingen, Germany, 3 Max Planck Institute for Biological Cybernetics, Tübingen, Germany, 4 Fraunhofer Institute FIRST, Berlin, Germany

Introduction

The increasing wealth of biological data

coming from a large variety of platforms

and the continued development of new

high-throughput methods for probing

biological systems require increasingly

more sophisticated computational ap-

proaches. Putting all these data in sim-

ple-to-use databases is a first step; but

realizing the full potential of the data

requires algorithms that automatically

extract regularities from the data, which

can then lead to biological insight.

Many of the problems in computational

biology are in the form of prediction: starting

from prediction of a gene’s structure,

prediction of its function, interactions, and

role in disease. Support vector machines

(SVMs) and related kernel methods are

extremely good at solving such problems [1–

3]. SVMs are widely used in computational

biology due to their high accuracy, their

ability to deal with high-dimensional and

large datasets, and their flexibility in mod-

eling diverse sources of data [2,4–6].

The simplest form of a prediction

problem is binary classification: trying to

discriminate between objects that belong

to one of two categories—positive (+1) or

negative (21). SVMs use two key concepts

to solve this problem: large margin

separation and kernel functions. The idea

of large margin separation can be moti-

vated by classification of points in two

dimensions (see Figure 1). A simple way to

classify the points is to draw a straight line

and call points lying on one side positive

and on the other side negative. If the two

sets are well separated, one would intui-

tively draw the separating line such that it

is as far as possible away from the points in

both sets (see Figures 2 and 3). This

intuitive choice captures the idea of large

margin separation, which is mathematically

formulated in the section Classification

with Large Margin.

Instead of the abstract idea of points in

space, one can think of our data points as

representing objects using a set of features

derived from measurements performed on

each object. For instance, in the case of

Figures 1–5, there are two measurements

for each object, depicted as points in a

two-dimensional space. For large margin

separation, it turns out that not the exact

location but only the relative position or

similarity of the points to each other is

important. In the simplest case of linear

classification, the similarity of two objects

is computed by the dot-product (a.k.a.

scalar or inner product) between the

corresponding feature vectors. To define

different similarity measures leading to

nonlinear classification boundaries (cf.

Figures 6 and 7), one can extend the idea

of dot products between points with the

help of kernel functions (cf. the section

Kernels: From Linear to Nonlinear Clas-

sifiers). Kernels compute the similarity of

two points and are the second important

concept of SVMs and kernel methods [2,7].

The domain knowledge inherent in any

classification task is captured by defining a

suitable kernel (i.e., similarity) between

objects. As we shall see later, this has two

advantages: the ability to generate nonlin-

ear decision boundaries using methods

designed for linear classifiers; and the

possibility of applying a classifier to data

that have no obvious vector space repre-

sentation; for example, DNA/RNA, or

protein sequences, or protein structures.

Running example: Splice site
recognition. Throughout this tutorial

we are going to use an example problem

for illustration. It is a problem arising in

computational gene finding and concerns

the recognition of splice sites that mark the

boundaries between exons and introns in

eukaryotes. Introns are excised from

premature mRNAs in a processing step

after transcription (see Figure 4 and, for

instance, [8–12] for more details).

The vast majority of all splice sites are

characterized by the presence of specific

dimers on the intronic side of the splice site:

GT for donor and AG for acceptor sites (see

Figure 5). However, only about 0.1%–1%

of all GT and AG occurrences in the

genome represent true splice sites. In this

tutorial, we consider the problem of

recognizing acceptor splice sites as a

running example, which allows us to

illustrate different properties of SVMs using

different kernels (similar results can be

obtained for donor splice sites as well [13]).

In the first part of the tutorial we are

going to use real-valued features describ-

ing the sequence surrounding the splice

site. For illustration purposes, we use only

two features: the GC content in the exon

and intron flanking potential acceptor sites.

These features are motivated by the fact

that the GC-content of exons is typically

higher than that of introns (see, e.g.,

Figure 1). In the second part, we show

how to take advantage of the flanking pre-

mRNA sequence itself, leading to consid-

erable performance improvements. (The

data used in the numerical examples was

generated by taking a random subset of

200 true splice sites and 2,000 decoy sites

from the first 100,000 entries in the C.

elegans acceptor splice site dataset from

[13] (cf. http://www.fml.tuebingen.mpg.

de/raetsch/projects/splice). Note that this

dataset is much smaller than the original

Citation: Ben-Hur A, Ong CS, Sonnenburg S, Schölkopf B, Rätsch G (2008) Support Vector Machines and
Kernels for Computational Biology. PLoS Comput Biol 4(10): e1000173. doi:10.1371/journal.pcbi.1000173

Published October 31, 2008

Copyright: � 2008 Ben-Hur et al. This is an open-access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Funding: AB is partially supported by National Science Foundation grant DBI-0754247.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Gunnar.Raetsch@tuebingen.mpg.de

. These authors contributed equally.

¤ Current address: Department of Computer Science, ETH, Zürich, Switzerland.

Editor: Fran Lewitter, Whitehead Institute, United States of America

PLoS Computational Biology | www.ploscompbiol.org 1 October 2008 | Volume 4 | Issue 10 | e1000173

dataset, and is also less unbalanced. In the

graphical examples in this tutorial, we

show only a small and selected subset of

the data suitable for illustration purposes.

In practice, there is a considerably stron-

ger overlap in the space of GC content

between positive examples (true acceptor

sites) and negative examples (other occur-

rences of AG) than appears on the

figures.

To evaluate the classifier performance, we

will use so-called receiver operating characteristic

(ROC) curves [14], which show the true

positive rates (y-axis) over the full range of

false positive rates (x-axis). Different values

are obtained by using different thresholds on

the value of the discriminant function for

assigning the class membership. The area

under the curve quantifies the quality of the

classifier, and a larger value indicates better

performance. Research has shown that it is a

better measure of classifier performance

than the success or error rate of the classifier

[15], in particular when the fraction of

examples in one class is much smaller than

the other. (Please note that the auROC is

independent of the class ratios. Hence, its

value is not necessarily connected with the

success of identifying rare events. The area

under the so-called precision recall curve is

better suited to evaluate how well one can

find rare events [16].)

SVM toolbox. All computational results

in this tutorial were generated using the

Shogun-based Easysvm tool [17] written in

python [18,19]. The source code to generate

the figures and results is provided under the

GNU General Public License [20] at http://

svmcompbio.tuebingen.mpg.de. That site

also provides a Web service that allows

one to train and evaluate SVMs. An

alternative implementation using PyML is

also available [70].

Large Margin Separation

Linear separation with

hyperplanes. In this section, we

introduce the idea of linear classifiers.

Support vector machines are an example

of a linear two-class classifier. The data for

a two-class learning problem consists of

objects labeled with one of two labels; for

convenience we assume the labels are +1

(positive examples) and 21 (negative

examples). Let x denote a vector with M

components xj, j = 1,…,M, i.e., a point in

an M-dimensional vector space. The

notation xi will denote the ith vector in a

dataset xi,yið Þf gn
i~1, where yi is the label

associated with xi, and n is the number of

examples. The objects xi are called patterns,

inputs, and also examples.

A key concept required for defining a

linear classifier is the dot product between

two vectors Sw,xT~
PM

j~1 wjxj , also re-

ferred to as the inner product or scalar product.

A linear classifier is based on a linear

discriminant function of the form

f xð Þ~Sw,xTzb: ð1Þ

The discriminant function f(x) assigns a

‘‘score’’ for the input x, and is used to

Figure 1. A linear classifier separating two classes of points (squares and circles) in
two dimensions. The decision boundary divides the space into two sets depending on the sign
of f(x) = Æw,xæ+b. The grayscale level represents the value of the discriminant function f(x): dark
for low values and a light shade for high values.
doi:10.1371/journal.pcbi.1000173.g001

Figure 2. The maximum margin boundary computed by a linear SVM. The region
between the two thin lines defines the margin area with 21#Æw,xæ+b#1. The data points
highlighted with black centers are the support vectors: the examples that are closest to the
decision boundary. They determine the margin by which the two classes are separated. Here,
there are three support vectors on the edge of the margin area (f(x) = 21 or f(x) = +1).
doi:10.1371/journal.pcbi.1000173.g002

PLoS Computational Biology | www.ploscompbiol.org 2 October 2008 | Volume 4 | Issue 10 | e1000173

decide how to classify it. The vector w is

known as the weight vector, and the scalar b

is called the bias. In two dimensions, the

points satisfying the equation Æw,xæ = 0

correspond to a line through the origin, in

three dimensions a plane, and more

generally a hyperplane. The bias translates

the hyperplane with respect to the origin

(see Figure 1). (Unlike many schematic

representations that the reader may have

seen, the figures in this paper are gener-

ated by actually applying the SVM on the

data points as shown. More details,

including code and data, are available at

http://svmcompbio.tuebingen.mpg.de.)

The hyperplane divides the space into

two half spaces according to the sign of

f(x), that indicates on which side of the

Figure 3. The effect of the soft-margin constant, C, on the decision boundary. We modified the toy dataset by moving the point shaded in
gray to a new position indicated by an arrow, which significantly reduces the margin with which a hard-margin SVM can separate the data. (A) We
show the margin and decision boundary for an SVM with a very high value of C, which mimics the behavior of the hard-margin SVM since it implies
that the slack variables ji (and hence training mistakes) have very high cost. (B) A smaller value of C allows us to ignore points close to the boundary,
and increases the margin. The decision boundary between negative examples and positive examples is shown as a thick line. The thin lines are on the
margin (discriminant value equal to 21 or +1).
doi:10.1371/journal.pcbi.1000173.g003

translation

post-processing &
splicing

transcription

Figure 4. The major steps in protein synthesis: transcription, post-processing, and translation. In the post-processing step, the pre-
mRNA is transformed into mRNA. One necessary step in the process of obtaining mature mRNA is called splicing. The mRNA sequence of a eukaryotic
gene is ‘‘interrupted’’ by noncoding regions called introns. A gene starts with an exon and may then be interrupted by an intron, followed by another
exon, intron, and so on until it ends in an exon. In the splicing process, the introns are removed. There are two different splice sites: the exon–intron
boundary, referred to as the donor site or 59 site (of the intron), and the intron–exon boundary, that is, the acceptor or 39 site. Splice sites have quite
strong consensus sequences, i.e., almost every position in a small window around the splice site is representative of the most frequently occurring
nucleotide when many existing sequences are compared in an alignment (cf. Figure 5). (The caption text appeared similarly in [30], the idea for this
figure is from [11].)
doi:10.1371/journal.pcbi.1000173.g004

PLoS Computational Biology | www.ploscompbiol.org 3 October 2008 | Volume 4 | Issue 10 | e1000173

hyperplane a point is located (see Figure 1):

if f(x).0, then one decides for the positive

class, otherwise for the negative. The

boundary between regions classified as

positive and negative is called the decision

boundary of the classifier. The decision

boundary defined by a hyperplane (cf.

Equation 1) is said to be linear because it is

linear in the input. (Note that strictly

speaking, for b?0, this is affine rather than

linear, but we will ignore this distinction.)

A classifier with a linear decision boundary

is called a linear classifier. In the next

section, we introduce one particular linear

classifier, the (linear) Support Vector

Machine, which turns out to be particu-

larly well suited to high-dimensional data.
Classification with large

margin. Whenever a dataset such as is

shown in Figure 1 is linearly separable,

i.e., there exists a hyperplane that correctly

classifies all data points, there exist many

such separating hyperplanes. We are thus

faced with the question of which

hyperplane to choose, ensuring that not

only the training data, but also future

examples, unseen by the classifier at

training time, are classified correctly.

Our intuition as well as statistical

learning theory [3] suggest that

hyperplane classifiers will work better if

the hyperplane not only separates the

examples correctly, but does so with a

weblogo.berkeley.edu

0

1

2
b
it
s

5′ -2
0

T

A

-1
9

T
A

-1
8

T

A

-1
7

T
A

-1
6

T
A

-1
5

T
A

-1
4

A

T

-1
3

A

T

-1
2

A

T

-1
1

A
T

-1
0

A
T

-9

T
A

-8

A
T

-7

C

A
T

-6

C

A

T

-5

T

-4

C
T

-3

A

T
C

-2

A

-1

G

0

G

A

1 2 3 4 5

3′

Figure 5. Sequence logo for acceptor splice sites: splice sites have quite strong consensus sequences, i.e., almost every position in a
small window around the splice site is representative of the most frequently occurring nucleotide when many existing sequences
are compared in an alignment. The sequence logo [72,73] shows the region around the intron/exon boundary—the acceptor splice site. In the
running example, we use the region up to 40 nt upstream and downstream of the consensus site AG.
doi:10.1371/journal.pcbi.1000173.g005

Figure 6. The effect of the degree of a polynomial kernel. The polynomial kernel of degree 1 leads to a linear separation (A). Higher-degree
polynomial kernels allow a more flexible decision boundary (B,C). The style follows that of Figure 3.
doi:10.1371/journal.pcbi.1000173.g006

Figure 7. The effect of the width parameter of the Gaussian kernel (s) for a fixed value of the soft-margin constant. For large values of
s (A), the decision boundary is nearly linear. As s decreases, the flexibility of the decision boundary increases (B). Small values of s lead to overfitting
(C). The figure style follows that of Figure 3.
doi:10.1371/journal.pcbi.1000173.g007

PLoS Computational Biology | www.ploscompbiol.org 4 October 2008 | Volume 4 | Issue 10 | e1000173

large margin. Here, the margin of a linear

classifier is defined as the distance of the

closest example to the decision boundary,

as shown in Figure 2. Let us adjust b such

that the hyperplane is half way in between

the closest positive and negative examples.

If, moreover, we scale the discriminant

function, Equation 1, to take the values

61 for these examples, we find that the

margin is 1/IwI, where IwI is the

length of w, also known as its norm, given

by
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sw,wT
p

[2].

The so-called hard margin SVM, applica-

ble to linearly separable data, is the

classifier with maximum margin among

all classifiers that correctly classify all the

input examples (see Figure 2). To compute

w and b corresponding to the maximum

margin hyperplane, one has to solve the

following optimization problem:

minimize
w,b

1

2
wk k2

subject to : yi Sw,xiTzbð Þ§1,

for i~1, . . . ,n,

ð2Þ

where the constraints ensure that each

example is correctly classified, and mini-

mizing IwI2 is equivalent to maximizing

the margin. (The set of formulas above

describes a quadratic optimization problem, in

which the optimal solution (w,b) is de-

scribed to satisfy the constraints yi(Æw,

xiæ+b)$1, while the length of w is as small

as possible. Such optimization problems

can be solved using standard tools from

convex optimization (see, e.g., [21]). For

specific optimization problems like the one

above, there exist specialized techniques to

efficiently solve such optimization prob-

lems for millions of examples or dimen-

sions.)

Soft margin. In practice, data are often

not linearly separable; and even if they

are, a greater margin can be achieved by

allowing the classifier to misclassify some

points—see Figure 3. Theory and

experimental results show that the

resulting larger margin will generally

provide better performance than the

hard margin SVM. To allow errors, we

replace the inequality constraints in

Equation 2 with

yi Sw,xiTzbð Þ§1{ji, for i~1, . . . ,n,

where ji$0 are slack variables that allow an

example to be in the margin or

misclassified. To discourage excess use of

the slack variables, a term CSiji is added

to the function to be optimized:

minimize
w,b,j

1

2
wk k2

zC
Xn

i~1

ji

subject to : yi Sw,xiTzbð Þ§1{ji,

ji§0, for i~1, . . . ,n:

ð3Þ

The constant C.0 sets the relative

importance of maximizing the margin and

minimizing the amount of slack. This

formulation is called the soft-margin SVM

[22].

The effect of the choice of C is

illustrated in Figure 3. For a large value

of C, a large penalty is assigned to errors.

This is seen in Figure 3A, where the two

points closest to the hyperplane strongly

affect its orientation, leading to a hyper-

plane that comes close to several other

data points. When C is decreased

(Figure 3B), those points move inside the

margin, and the hyperplane’s orientation

is changed, leading to a much larger

margin for the rest of the data. Note that

the scale of C has no direct meaning, and

there is a formulation of SVMs that uses a

more intuitive parameter 0,n#1 instead.

The parameter n controls the fraction of

support vectors, and of margin errors (n-

SVM, see [2,7]).

Dual formulation. Using the method

of Lagrange multipliers (see, e.g., [21]), we

can obtain the dual formulation. (The dual

optimization problem is a reformulation of

the original, primal optimization problem.

It typically has as many variables as the

primal problem has constraints. Its

objective value at optimality is equal to

the optimal objective value of the primal

problem, under certain conditions; see,

e.g., [21] for more details.) It is expressed

in terms of variables ai [2,22]:

maximize
a

Xn

i~1

ai

{
1

2

Xn

i~1

Xn

j~1

yiyjaiajSxi,xjT

subject to :
Xn

i~1

yiai~0, 0ƒaiƒC:

ð4Þ

One can prove that the weight vector w
in Equation 3 can be expressed in terms of

the examples xi and the solution ai of the

above optimization problem as

w~
Xn

i~1

yiaixi: ð5Þ

The xi for which ai.0 are called support

vectors; they can be shown to lie on or

within the margin (points with black circles

in Figures 2–7). Intuitively, all other

training examples do not contribute to

the geometric location of the large margin

hyperplane—the solution would have

been the same even if they had not been

in the training set to begin with. It is thus

not surprising that they drop out of the

expansion in Equation 5.

Note that the dual formulation of the

SVM optimization problem depends on

the inputs xi only through dot products. In

the next section, we will show that the

same holds true for the discriminant

function given by Equation 1. This will

allow us to ‘‘kernelize’’ the algorithm.

Kernels: From Linear to
Nonlinear Classifiers

In many applications, a nonlinear

classifier provides better accuracy. And

yet linear classifiers have advantages, one

of them being that they often have simple

training algorithms that scale well with the

number of examples [23,24]. This begs the

question whether the machinery of linear

classifiers can be extended to generate

nonlinear decision boundaries. Further-

more, can we handle domains such as

biological sequences where a vector space

representation is not necessarily available?

There is a straightforward way of

turning a linear classifier nonlinear, or

making it applicable to nonvectorial data.

It consists of mapping our data to some

vector space, which we will refer to as the

feature space, using a function w. The

discriminant function then is

f xð Þ~Sw,w xð ÞTzb: ð6Þ

Note that f(x) is linear in the feature

space defined by the mapping w; but when

viewed in the original input space, it is a

nonlinear function of x if w(x) is a

nonlinear function. The simplest example

of such a mapping is one that considers all

products of pairs of features (related to the

polynomial kernel; see below). The result-

ing classifier has a quadratic discriminant

function (see example in Figure 6B). This

approach of explicitly computing nonline-

ar features does not scale well with the

number of input features. The dimension-

ality of the feature space associated with

the above example is quadratic in the

number of dimensions of the input space.

If we were to use monomials of degree d

rather than degree 2 monomials as above,

the dimensionality would be exponential

in d, resulting in a substantial increase in

memory usage and the time required to

PLoS Computational Biology | www.ploscompbiol.org 5 October 2008 | Volume 4 | Issue 10 | e1000173

compute the discriminant function. If our

data are high-dimensional to begin with,

such as in the case of gene expression data,

this is not acceptable. Kernel methods

avoid this complexity by avoiding the step

of explicitly mapping the data to a high-

dimensional feature space.

We have seen above (Equation 5) that

the weight vector of a large margin

separating hyperplane can be expressed

as a linear combination of the training

points, i.e., w~
Pn

i~1 yiaixi. The same

holds true for a large class of linear

algorithms, as shown by the representer

theorem (see [2]). Our discriminant function

then becomes

f xð Þ~
Xn

i~1

yiaiSw xið Þ,w xð ÞTzb: ð7Þ

The representation in terms of the

variables ai is known as the dual represen-

tation (cf. the section Classification with

Large Margin). We observe that the dual

representation of the discriminant function

depends on the data only through dot

products in feature space. The same

observation holds for the dual optimiza-

tion problem (Equation 4) when we

replace xi with w(xi) (analogously for xj).

If the kernel function k(x,x9) defined as

k x,x0ð Þ~Sw xð Þ, w x0ð ÞT: ð8Þ

can be computed efficiently, then the dual

formulation becomes useful, as it allows us

to solve the problem without ever carrying

out the mapping w into a potentially very

high-dimensional space. The recurring

theme in what follows is to define mean-

ingful similarity measures (kernel functions)

that can be computed efficiently.
Kernels for real-valued data. Real-

valued data, i.e., data where the examples

are vectors of a given dimensionality, are

common in bioinformatics and other

areas. A few examples of applying SVM

to real-valued data include prediction of

disease state from microarray data (see,

e.g., [25]), and prediction of protein

function from a set of features that

include amino acid composition and

various properties of the amino acids in

the protein (see, e.g., [26]).

The two most commonly used kernel

functions for real-valued data are the

polynomial and the Gaussian kernel. The

polynomial kernel of degree d is defined as:

k
polynomial
d,k x,x0ð Þ~ Sx,x0Tzkð Þd , ð9Þ

where k is often chosen to be 0 (homoge-

neous) or 1 (inhomogeneous). The feature

space for the inhomogeneous kernel con-

sists of all monomials with degree up to d

[2]. And yet, its computation time is linear

in the dimensionality of the input space.

The kernel with d = 1 and k = 0, denoted

by klinear, is the linear kernel leading to a

linear discriminant function.

The degree of the polynomial kernel

controls the flexibility of the resulting

classifier (Figure 6). The lowest degree

polynomial is the linear kernel, which is

not sufficient when a nonlinear relationship

between features exists. For the data in

Figure 6, a degree 2 polynomial is already

flexible enough to discriminate between the

two classes with a good margin. The degree

5 polynomial yields a similar decision

boundary, with greater curvature. Normal-

ization (cf. the section Normalization) can

help to improve performance and numer-

ical stability for large d.

The second very widely used kernel is

the Gaussian kernel defined by

kGaussian
s x,x0ð Þ

~exp {
1

s
x{x0k k2

� �
,

ð10Þ

where s.0 is a parameter that controls

the width of the Gaussian. It plays a

similar role as the degree of the polyno-

mial kernel in controlling the flexibility of

the resulting classifier (see Figures 6 and 7).

The Gaussian kernel is essentially zero if

the squared distance Ix2x9I2 is much

larger than s; i.e., for a fixed x9 there is a

region around x9 with high kernel values.

The discriminant function (Equation 7) is

thus a sum of Gaussian ‘‘bumps’’ centered

around each support vector (SV). When s
is large (Figure 7A), a given data point x
has a nonzero kernel value relative to any

example in the set of examples. Therefore,

the whole set of SVs affects the value of the

discriminant function at x, leading to a

smooth decision boundary. As we decrease

s, the kernel becomes more local, leading

to greater curvature of the decision

surface. When s is small, the value of the

discriminant function is nonzero only in

the close vicinity of each SV, leading to a

discriminant that is essentially constant

outside the close proximity of the region

where the data are concentrated

(Figure 7C).

As seen from the examples in Figures 6

and 7, the width parameter of the

Gaussian kernel and the degree of poly-

nomial kernel determine the flexibility of

the resulting SVM in fitting the data.

Large degree or small width values can

lead to overfitting and suboptimal perfor-

mance (Figure 7C).

Results on a much larger sample of the

two dimensional splice site recognition

dataset are shown in Table 1. We observe

that the use of a nonlinear kernel, either

Gaussian or polynomial, leads to a small

improvement in classifier performance

when compared to the linear kernel. For

the large degree polynomial and small

width Gaussian kernel, we obtained re-

duced accuracy, which is the result of a

kernel that is too flexible, as described

above.

Kernels for sequences. So far we

have shown how SVMs perform on our

splice site example if we use kernels based

only on the two GC content features

derived from the exonic and intronic parts

of the sequence. The small subset of the

dataset shown in Figures 1–7 seems to

suggest that these features are sufficient to

distinguish between the true splice sites

and the decoys. This is not the case for a

larger dataset, where examples from the

two classes highly overlap. Therefore, to

be able to separate true splice sites from

decoys, one needs additional features

derived from the same sequences. For

instance, one may use the count of all four

letters on the intronic and exonic part of

the sequence (leading to eight features), or

even all dimers (32 features), trimers (128

features), or longer ,-mers (2 ? 4, features).

Kernels describing ,-mer content. The

above idea is realized in the so-called spectrum

kernel that was first proposed for classifying

protein sequences [27,28]:

k
spectrum
‘ x,x0ð Þ

~SWspectrum
‘ xð Þ,Wspectrum

‘ x0ð ÞT,
ð11Þ

Table 1. SVM accuracy on the task of
acceptor site recognition using
polynomial and Gaussian kernels with
different degrees d and widths s.

Kernel auROC

Linear 88.2%

Polynomial d = 3 91.4%

Polynomial d = 7 90.4%

Gaussian s = 100 87.9%

Gaussian s = 1 88.6%

Gaussian s = 0.01 77.3%

Accuracy is measured using the area under the
ROC curve (auROC) and is computed using 5-fold
cross-validation (cf. the section Running Example:
Splice Site Recognition for details).
doi:10.1371/journal.pcbi.1000173.t001

PLoS Computational Biology | www.ploscompbiol.org 6 October 2008 | Volume 4 | Issue 10 | e1000173

where x̄,x̄9 are two sequences over an

alphabet S, e.g., protein or DNA

sequences. By |S|, we denote the number

of letters in the alphabet. Wspectrum
‘ is a

mapping of the sequence x̄ into a |S|,

dimensional feature space. Each dimension

corresponds to one of the |S|, possible

strings s of length , and is the count of the

number of occurrences of s in x̄. Please note

that computing the spectrum kernel using

the explicit computation of W will be

inefficient for large ,: since it requires

computation of the |S|, entries of the

mapping W, which would be unfeasible for

nucleotide sequences with ,$10 or protein

sequences with ,$5. Faster computation is

possible by exploiting the fact that the only

,-mers that contribute to the dot product (in

Equation 11) are those that actually appear

in the sequences. This leads to algorithms

that are linear in the length of the sequences

instead of the exponential |S|,

computation time (see, e.g., [29] for more

details and references).

If we use the spectrum kernel for the

splice site recognition task, we obtain

considerable improvement over the simple

GC content features (see Table 2). The co-

occurrence of long substrings is more

informative than those of short ones. This

explains the increase in performance of the

spectrum kernel as the length of substrings

, is increased. Since the spectrum kernel

allows no mismatches, when , is suffi-

ciently long the chance of observing

common occurrences becomes small and

the kernel will no longer perform well.

This explains the decrease in the perfor-

mance observed in Table 2 for , = 5. This

problem is alleviated if we use the mixed

spectrum kernel:

k
mixedspectrum
‘ x,x0ð Þ

~
X‘
d~1

bdk
spectrum
d x,x0ð Þ,

ð12Þ

where bd is a weighting for the different

substring lengths (details below).

Kernels using positional informa-
tion. The kernels mentioned above

ignore the position of substrings within the

input sequence. However, in our example of

splice site prediction, it is known that there

exist sequence motifs near the splice site that

allow the spliceosome to accurately

recognize the splice sites. While the

spectrum kernel is in principle able to

recognize such motifs, it cannot distinguish

where exactly the motif appears in the

sequence. However, this is crucial in

deciding where exactly the splice site is

located. And indeed, Position Weight

Matrices (PWMs) are able to predict splice

sites with high accuracy. The kernel

introduced next is analogous to PWMs in

the way it uses positional information, and

its use in conjunction with a large margin

classifier leads to improved performance

[30]. The idea is to analyze sequences of

fixed length L and consider substrings

starting at each position l = 1,…,L separately,

as implemented by the so-called weighted

degree (WD) kernel:

k
weighteddegree
‘ x,x0ð Þ

~
X‘
d~1

XL{dz1

‘~1

bdk
spectrum
d x l:lzd½ �,x

0
l:lzd½ �

� �
,
ð13Þ

where x̄[l:l+d] is the substring of length d of x̄
at position l. A suggested setting for bd is the

weighting bd~2 ‘{dz1
‘2z1

[29,30]. Note that

using the WD kernel is equivalent to using a

mixed spectrum kernel for each position of

the sequence separately (ignoring boundary

effects). Observe in Table 2 that, as

expected, the positional information

considerably improves the SVM

performance.

The WD kernel with shifts [31] is an

extension of the WD kernel, allowing some

positional flexibility of matching sub-

strings. The locality improved kernel [32]

and the oligo kernel [33] achieve a similar

goal in a slightly different way.

Note that since the polynomial and

Gaussian kernels are functions of the

linear kernel, the above-described se-

quence kernels can be used in conjunction

with the polynomial or Gaussian kernel to

model more complex decision boundaries.

For instance, the polynomial kernel of

degree d combined with the ,-spectrum

kernel, i.e.,

kd,k,‘ x,x0ð Þ~ k
spectrum
‘ x,x0ð Þzk

� �d
,

can model up to d co-occurrences of ,-

mers (similarly proposed in [32]).

Other sequence kernels. Because of

the importance of sequence data and the

many ways of modeling it, there are many

alternatives to the spectrum and weighted

degree kernels. Most closely related to the

spectrum kernel are extensions allowing

for gaps or mismatches [28]. The feature

space of the spectrum kernel and these

related kernels is the set of all ,-mers of a

given length. An alternative is to restrict

attention to a predefined set of motifs

[34,35].

Sequence similarity has been studied

extensively in the bioinformatics commu-

nity, and local alignment algorithms like

BLAST and Smith-Waterman are good at

revealing regions of similarity between

proteins and DNA sequences. The statistics

produced by these algorithms do not satisfy

the mathematical condition required of a

kernel function. But they can still be used as

a basis for highly effective kernels. The

simplest way is to represent a sequence in

terms of its BLAST/Smith-Waterman

scores against a database of sequences

[36]. This is a general method for using a

similarity measure as a kernel. An alterna-

tive approach taken was to modify the

Smith-Waterman algorithm to consider the

space of all local alignments, leading to the

local alignment kernel [37].

Probabilistic models, and Hidden Mar-

kov Models in particular, are in wide use

for sequence analysis. The dependence of

the log-likelihood of a sequence on the

parameters of the model can be used to

represent a variable-length sequence in a

fixed dimensional vector space. The so-

called Fisher-kernel uses the sensitivity of

the log-likelihood of a sequence with

respect to the model parameters as the

feature space [38] (see also [39]). The

intuition is that if we were to update the

model to increase the likelihood of the

data, this is the direction a gradient-based

method would take. Thus, we are charac-

terizing a sequence by its effect on the

model. Other kernels based on probabilis-

tic models include the Covariance kernel

[40] and Marginalized kernels [41].

Summary and Further Reading

This tutorial introduced the concepts of

large margin classification as implemented

Table 2. The area under the ROC curve
(auROC) of SVMs with the spectrum,
mixed spectrum, and weighted degree
kernels on the acceptor splice site
recognition task for different substring
lengths ,.

Kernel auROC

Spectrum , = 1 94.0%

Spectrum , = 3 96.4%

Spectrum , = 5 94.5%

Mixed spectrum , = 1 94.0%

Mixed spectrum , = 3 96.9%

Mixed spectrum , = 5 97.2%

WD , = 1 98.2%

WD , = 3 98.7%

WD , = 5 98.9%

doi:10.1371/journal.pcbi.1000173.t002

PLoS Computational Biology | www.ploscompbiol.org 7 October 2008 | Volume 4 | Issue 10 | e1000173

by SVMs, an idea that is both intuitive

and also supported by theoretical results in

statistical learning theory. The SVM

algorithm allows the use of kernels, which

are efficient ways of computing scalar

products in nonlinear feature spaces. The

‘‘kernel trick’’ is also applicable to other

types of data, e.g., sequence data, which

we illustrated in the problem of predicting

splice sites in C. elegans.

In the rest of this section, we outline issues

that we have not covered in this tutorial and

provide pointers for further reading. For a

comprehensive discussion of SVMs and

kernel methods, we refer the reader to

recent books on the subject [2,5,7].

Normalization. Large margin

classifiers are known to be sensitive to

the way features are scaled (see, for

example [42], in the context of SVMs). It

can therefore be essential to normalize the

data. This observation carries over to

kernel-based classifiers that use nonlinear

kernel functions. Normalization can be

performed at the level of the input features

or at the level of the kernel (normalization

in feature space), or both. When features

are measured in different scales and have

different ranges of possible values, it is

often beneficial to scale them to a common

range, e.g., by standardizing the data (for

each feature, subtracting its mean and

dividing by its standard deviation). An

alternative to normalizing each feature

separately is to normalize each example to

be a unit vector. This can be done at the

level of the input features by dividing each

example by its norm, i.e., x̃: = x/IxI, or

at the level of the kernel which normalizes

in the feature-space of the kernel, i.e.,ekk x,x0ð Þ : ~k x,x0ð Þ
� ffi

k x,xð Þk x0,x0ð Þ
p

. For

the discussed splice site data, the results

differed considerably when using different

normalizations for the linear, polynomial,

and Gaussian kernels. Generally, our

experience shows that normalization

often leads to improved performance for

both linear and nonlinear kernels, and can

also lead to faster convergence.

Handling unbalanced data. Many

datasets encountered in bioinformatics

and other areas of application are

unbalanced, i.e., one class contains a lot

more examples than the other. For

instance, in the case of splice site

detection, there are 100 times fewer

positive examples than negative ones.

Unbalanced datasets can present a

challenge when training a classifier, and

SVMs are no exception. The standard

approach to addressing this issue is to

assign a different misclassification cost to

each class. For SVMs, this is achieved by

associating a different soft-margin constant

to each class according to the number of

examples in the class (see, e.g., [43] for a

general overview of the issue). For

instance, for the splice site recognition

example, one may use a value of C (in

Equation 3) that is 100 times larger for the

positive class than for the negative class.

Often when data is unbalanced, the cost of

misclassification is also unbalanced; for

example, having a false negative is more

costly than a false positive. In some cases,

considering the SVM score directly rather

than just the sign of the score is more

useful.

Kernel choice and model

selection. A question frequently posed

by practitioners is ‘‘which kernel with

which parameters should I use for my

data?’’ There are several answers to this

question. The first is that it is, like most

practical questions in machine learning,

data-dependent, so several kernels should

be tried. That being said, one typically

follows the following procedure: try a

linear kernel first, and then see if we can

improve on its performance using a

nonlinear kernel. The linear kernel

provides a useful baseline, and in many

bioinformatics applications it is hard to

beat, in particular if the dimensionality of

the inputs is large and the number of

examples small. The flexibility of the

Gaussian and polynomial kernels can

lead to overfitting in high-dimensional

datasets with a small number of

examples, such as in micro-array

datasets. If the examples are (biological)

sequences, then the spectrum or the WD

kernel of relatively low order (say , = 3)

are good starting points if the sequences

have varying or fixed length. Depending

on the problem, one may then try the

spectrum kernel with mismatches, the

oligo kernel, the WD kernel with shifts,

or the local alignment kernel.

In problems such as prediction of

protein function or protein interactions,

there are several sources of genomic data

that are relevant, each of which may

require a different kernel to model. Rather

than choosing a single kernel, several

papers have established that using a

combination of multiple kernels can sig-

nificantly boost classifier performance

[44–46].

When selecting the kernel, its parame-

ters, and the soft-margin parameter C, one

has to take care that this choice is made

completely independently of the examples

used for performance evaluation of the

method. Otherwise, one will overestimate

the accuracy of the classifier on unseen

data points. This can be done by suitably

splitting the data into several parts, where

one part, say 50%, is used for training,

another part (20%) for tuning of SVM and

kernel parameters, and a third part (30%)

for final evaluation. Techniques such as N-

fold cross-validation can help if the parts

become too small to reliably measure

prediction performance (see, for example,

[47,48]).

Kernels for other data types. We

have focused on kernels for real-valued and

sequence data; and while this covers many

bioinformatics applications, often data is

better modeled by more complex data

types. Many types of bioinformatics data

can be modeled as graphs, and the inputs

can be either nodes in the graph, e.g.,

proteins in an interaction network, or the

inputs can be represented by graphs, e.g.,

proteins modeled by phylogenetic trees.

Kernels have been developed for both

scenarios. Researchers have developed

kernels to compare phylogenetic profiles

modeled as trees [49], protein structures

modeled as graphs of secondary-structural

elements [50,51], and graphs representing

small molecules [52]. The diffusion kernel

is a general method for propagating kernel

values on a graph [53]. Several of the

kernels described above are based on the

framework of convolution kernels [54], which is

a method for developing kernels for an

object based on kernels defined on its sub-

parts, such as a protein structure composed

of secondary structural elements [50].

Kernels (and hence the similarity) on

structured data can also be understood as

how much one object has to be transformed

before it is identical to the other, which

leads to the idea of transducers [55]. More

details on kernels can be found in books

such as [2,5,7,56].

SVM training algorithms and

software. The popularity of SVMs has

led to the development of a large number

of special-purpose solvers for the SVM

optimization problem [57]. LIBSVM [42]

and SVMlight [58] are two popular

examples of this class of software. The

complexity of training of nonlinear SVMs

with solvers such as LIBSVM has been

estimated to be quadratic in the number of

training examples [57], which can be

prohibitive for datasets with hundreds of

thousands of examples. Researchers have

therefore explored ways to achieve faster

training times. For linear SVMs, very

efficient solvers are available that

converge in a time that is linear in the

number of examples [57,59,60].

Approximate solvers that can be trained

in linear time without a significant loss of

accuracy were also developed [61].

Another class of software includes

machine learning libraries that provide a

PLoS Computational Biology | www.ploscompbiol.org 8 October 2008 | Volume 4 | Issue 10 | e1000173

variety of classification methods and other

facilities such as methods for feature

selection, preprocessing, etc. The user

has a large number of choices, and the

following is an incomplete list of environ-

ments that provide an SVM classifier:

Orange [62], The Spider [63], Elefant [64],

Plearn [65], Weka [66], Lush [67], Shogun

[68], RapidMiner [69], PyML [70], and

Easysvm [17]. The SVM implementations

in several of these packages are wrappers

for the LIBSVM [42] or SVMlight [58]

library. The Shogun toolbox contains eight

different SVM implementations together

with a large collection of different kernels

for real-valued and sequence data.

A repository of machine learning open

source software is available at http://

mloss.org as part of an initiative advocat-

ing distribution of machine learning algo-

rithms as open source software [71].

Acknowledgments

We would like to thank Alexander Zien for

discussions, and Nora Toussaint, Sebastian

Henschel, and Petra Philips for comments on

the manuscript.

References

1. Boser BE, Guyon IM, Vapnik VN (1992) A

training algorithm for optimal margin classifiers.

In: Haussler D, ed. 5th Annual ACM Workshop

on COLT. Pittsburgh (Pennsylvania): ACM Press.

pp 144–152. Available: http://www.clopinet.

com/isabelle/Papers. Accessed 11 August 2008.

2. Schölkopf B, Smola A (2002) Learning with

kernels. Cambridge (Massachusetts): MIT Press.

3. Vapnik V (1999) The nature of statistical learning

theory. 2nd edition. Springer.

4. Müller KR, Mika S, Rätsch G, Tsuda K,

Schölkopf B (2001) An introduction to kernel-

based learning algorithms. IEEE Trans Neural

Netw 12: 181–201.

5. Schölkopf B, Tsuda K, Vert JP (2004) Kernel

methods in computational biology. Cambridge

(Massachusetts): MIT Press.

6. Vert JP (2007) Kernel methods in genomics and

computational biology. In: Camps-Valls G, Rojo-

Alvarez JL, Martinez-Ramon M, eds. Kernel

methods in bioengineering, signal and image

processing Idea Group. pp 42–63.

7. Shawe-Taylor J, Cristianini N (2004) Kernel

methods for pattern analysis. Cambridge (United

Kingdom): Cambridge University Press.

8. Black DL (2003) Mechanisms of alternative pre-

messenger RNA splicing. Annu Rev Biochem

72: 291–336. doi:10.1146/annurev.biochem.72.

121801.161720. Available: http://arjournals.

annualreviews.org/doi/abs/10.1146/annurev.

biochem.72.121801.161720?cookieSet = 1&

journalCode = biochem. Accessed 11 August

2008.

9. Burge C, Tuschl T, Sharp P (1999) Splicing of

precursors to mRNAs by the spliceosomes. In:

Gesteland R, Cech T, Atkins JF, eds. The RNA

world. 2nd edition. Cold Spring Harbor Labora-

tory Press. pp 525–560.

10. Nilsen T (2003) The spliceosome: The most

complex macromolecular machine in the cell?

Bioessays 25.

11. Lewin B (2007) Genes IX. Jones & Bartlett

Publishers.

12. Holste D, Ohler U (2008) Strategies for identify-

ing RNA splicing regulatory motifs and predicting

alternative splicing events. PLoS Computational

Biology 4: e21. doi/10.1371/journal.pcbi.

0040021.

13. Sonnenburg S, Schweikert G, Philips P, Behr J,

Rätsch G (2007) Accurate splice site prediction

using support vector machines. BMC Bioinfor-

matics 8: S7.

14. Metz CE (1978) Basic principles of ROC analysis.

Seminars in Nuclear Medicine VIII.

15. Provost FJ, Fawcett T, Kohavi R (1998) The case

against accuracy estimation for comparing induc-

tion algorithms. In: Shavlik J, ed. ICML ’98:

Proceedings of the Fifteenth International Con-

ference on Machine Learning. San Francisco:

Morgan Kaufmann Publishers Inc. pp 445–

453.

16. Davis J, Goadrich M (2006) The relationship

between precision-recall and ROC curves.

ICML. New York: ACM Press. pp 233–240.

17. Easysvm toolbox. Available: http://www.easysvm.

org. Accessed 11 August 2008.

18. Python Software Foundation (2007) Python.
Available: http://python.org. Accessed 11 August

2008.

19. Bassi S (2007) A primer on python for life science
researchers. PLoS Comput Biol 3: e199.

doi:10.1371/journal.pcbi.0030199.

20. GNU general public license. Available: http://

www.gnu.org/copyleft/gpl.html. Accessed 11 Au-

gust 2008.

21. Boyd S, Vandenberghe L (2004) Convex optimi-

zation. Cambridge University Press.

22. Cortes C, Vapnik V (1995) Support vector
networks. Mach Learn 20: 273–297.

23. Hastie T, Tibshirani R, Friedman J (2001) The
elements of statistical learning. Springer.

24. Bishop C (2007) Pattern recognition and machine

learning. Springer.

25. Guyon I, Weston J, Barnhill S, Vapnik V (2002)

Gene selection for cancer classification using
support vector machines. Mach Learn 46:

489–422.

26. Cai C, Han L, Ji Z, Chen X, Chen Y (2003)
SVM-Prot: Web-based support vector machine

software for functional classification of a protein

from its primary sequence. Nucleic Acids Res 31:
3692–3697. doi:10.1093/nar/gkg600. Available:

http://nar.oxfordjournals.org/cgi/content/abstract/
31/13/3692. Accessed 11 August 2008.

27. Leslie C, Eskin E, Noble WS (2002) The spectrum

kernel: A string kernel for SVM protein classifi-
cation. In: Proceedings of the Pacific Symposium

on Biocomputing. pp 564–575.

28. Leslie C, Eskin E, Weston J, Noble W (2003)
Mismatch string kernels for discriminative protein

classification. Bioinformatics 20.

29. Sonnenburg S, Rätsch G, Rieck K (2007) Large

scale learning with string kernels. In: Bottou L,

Chapelle O, DeCoste D, Weston J, eds. Large
scale kernel machines MIT Press. pp 73–104.

30. Rätsch G, Sonnenburg S (2004) Accurate splice
site detection for Caenorhabditis elegans. In: B

Schölkopf KT, Vert JP, eds. Kernel methods in

computational biology. Cambridge (Massachu-
setts): MIT Press. pp 277–298. Available: http://

www.fml.tuebingen.mpg.de/raetsch/projects/

MITBookSplice/files/RaeSon04.pdf. Accessed
11 August 2008.

31. Rätsch G, Sonnenburg S, Schölkopf B (2005)
RASE: Recognition of alternatively spliced exons

in C. elegans. Bioinformatics 21: i369–i377.

32. Zien A, Rätsch G, Mika S, Schölkopf B,
Lengauer T, et al. (2000) Engineering support

vector machine kernels that recognize translation

initiation sites. Bioinformatics 16: 799–807.

33. Meinicke P, Tech M, Morgenstern B, Merkl R

(2004) Oligo kernels for datamining on biological
sequences: A case study on prokaryotic translation

initiation sites. BMC Bioinformatics 5: 169.

34. Logan B, Moreno P, Suzek B, Weng Z, Kasif S
(2001) A study of remote homology detection.

Technical report CRL 2001/05. Compaq Cam-
bridge Research Laboratory.

35. Ben-Hur A, Brutlag D (2003) Remote homology

detection: A motif based approach. Bioinfor-
matics 19: i26–i33.

36. Liao L, Noble W (2003) Combining pairwise

similarity and support vector machines for

detecting remote protein evolutionary and struc-
tural relationships. J Comput Biol 10: 2429–2437.

37. Vert JP, Saigo H, Akutsu T (2004) Local

alignment kernels for biological sequences. In: B
Schölkopf KT, Vert JP, eds. Kernel methods in

computational biology. Cambridge (Massachu-
setts): MIT Press. pp 131–154.

38. Jaakkola T, Diekhans M, Haussler D (2000) A

discriminative framework for detecting remote
protein homologies. J Comp Biol 7: 95–114.

39 . Tsuda K, Kawanabe M, Rä t s ch G,

Sonnenburg S, Müller K (2002) A new discrim-
inative kernel from probabilistic models. Neural

Computation 14: 2397–2414. Available: http://
neco.mitpress.org/cgi/content/abstract/14/10/

2397. Accessed 11 August 2008.

40. Seeger M (2002) Covariance kernels from Bayes-
ian generative models. Adv Neural Information

Proc Sys 14: 905–912.

41. Tsuda K, Kin T, Asai K (2002) Marginalized

kernels for biological sequences. Bioinformatics

18: 268S–275S.

42. Chang CC, Lin CJ (2001) LIBSVM: A library for

support vector machines. Software available at

http://www.csie.ntu.edu.tw/
˜
cjlin/libsvm. Ac-

cessed 11 August 2008.

43. Provost F (2000) Learning with imbalanced data
sets 101. In: AAAI 2000 workshop on imbalanced

data sets. Available: http://pages.stern.nyu.

edu/
˜
fprovost/Papers/skew.PDF. Accessed 11

August 2008.

44. Pavlidis P, Weston J, Cai J, Noble W (2002)

Learning gene functional classifications from
multiple data types. J Comput Biol 9: 401–411.

45. Lanckriet G, Bie TD, Cristianini N, Jordan M,
Noble W (2004) A statistical framework for

genomic data fusion. Bioinformatics 20:

2626–2635.

46. Ben-Hur A, Noble WS (2005) Kernel methods for

predicting protein–protein interactions. Bioinfor-
matics 21(Supplement 1): i38–i46.

47. Tarca A, Carey V, Chen XW, Romero R,

Draghici S (2007) Machine learning and its
applications to biology. PLoS Comput Biol 3:

e116. doi/10.1371/journal.pcbi.0030116.

48. Duda R, Hart P, Stork D (2001) Pattern
classification. New York: Wiley-Interscience.

49. Vert JP (2002) A tree kernel to analyze phyloge-
netic profiles. Bioinformatics 18: S276–S284.

5 0 . Bo rg wa rd t K , O ng C , S chn au e r S ,

Vishwanathan S, Smola A, et al. (2005) Protein
function prediction via graph kernels. Bioinfor-

matics 21: i47–i56.

51. Borgwardt KM (2007) Graph dernels [Ph.D.
thesis]. Munich: Ludwig-Maximilians-University

Munich.

52. Kashima H, Tsuda K, Inokuchi A (2004) Kernels

for graphs. In: Schölkopf B, Tsuda K, Vert JP,

eds. Kernel methods in computational biology.
Cambridge (Massachusetts): MIT Press. pp

155–170.

53. Kondor R, Vert JP (2004) Diffusion kernels. In:

Schölkopf B, Tsuda K, Vert JP, eds. Kernel

methods in computational biology. Cambridge
(Massachusetts): MIT Press. pp 171–192.

54. Haussler D (1999) Convolutional kernels on

discrete structures. Technical Report UCSC-

PLoS Computational Biology | www.ploscompbiol.org 9 October 2008 | Volume 4 | Issue 10 | e1000173

CRL-99-10. Santa Cruz (California): UC Santa

Cruz Computer Science Department.
55. Cortes C, Haffner P, Mohri M (2004) Rational

kernels: Theory and algorithms. J Mach Learn

Res 5: 1035–1062.
56. Gärtner T (2008) Kernels for structured data.

World Scientific Publishing.
57. Bottou L, Chapelle O, DeCoste D, Weston J, eds.

(2007) Large scale kernel machines. Cambridge

(Massachusetts): MIT Press. Available: http://
leon.bottou.org/papers/lskm-2007. Accessed 11

August 2008.
58. Joachims T (1998) Making large-scale support

vector machine learning practical. In: Schölkopf B,
Burges C, Smola A, eds. Advances in kernel

methods: Support vector machines. Cambridge

(Massachusetts): MIT Press, Chapter 11.
59. Joachims T (2006) Training linear SVMs in linear

time. In: Proceedings of the ACM SIGKDD
International Conference on Knowledge Discov-

ery and Data Mining (KDD). pp 217–226.

60. Sindhwani V, Keerthi SS (2006) Large scale semi-
supervised linear SVMs. In: Proceedings of the 29th

Annual International ACM SI-GIR Conference on
Research and Development in Information Re-

trieval. New York: ACM Press, pp 477–484.
doi:http://doi.acm.org/10.1145/1148170.

1148253. Available: http://portal.acm.org/

citation.cfm?id = 1148170.1148253. Accessed 16
August 2008.

61. Bordes A, Ertekin S, Weston J, Bottou L (2005)

Fast kernel classifiers with online and active
learning. J Mach Learn Res 6: 1579–1619.

62. Demsar J, Zupan B, Leban G (2004) Orange:
From experimental machine learning to interac-

tive data mining. Faculty of Computer and

Information Science, University of Ljubljana.
http://www.ailab.si/orange.

63. The Spider toolbox. Available: http://www.kyb.
tuebingen.mpg.de/bs/people/spider. Accessed

11 August 2008.
64. Gawande K, Webers C, Smola A, Vishwanathan S,

Gunter S, et al. (2007) ELEFANT user manual

(revision 0.1). Technical report. NICTA. Available:
http://elefant.developer.nicta.com.au. Accessed 11

August 2008.
65. Plearn toolbox. Available: http://plearn.berlios.

de/. Accessed 11 August 2008.

66. Witten IH, Frank E (2005) Data mining: Practical
machine learning tools and techniques. 2nd

edition. Morgan Kaufmann.
67. Bottou L, Cun YL (2002) Lush reference manual.

Available: http://lush.sourceforge.net. Accessed
11 August 2008.

68. Sonnenburg S, Rätsch G, Schäfer C, Schölkopf B

(2006) Large scale multiple kernel learning. J
Mach Learn Res 7: 1531–1565. Available: http://

jmlr.csail.mit.edu/papers/v7/sonnenburg06a.

html. Accessed 11 August 2008.
69. Mierswa I, Wurst M, Klinkenberg R, Scholz M,

Euler T (2006) YALE: Rapid prototyping for
complex data mining tasks. In: Proceedings of the

12th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining.
Available: http://portal.acm.org/citation.

cfm?id = 1276958.1277323. Accessed 11 August
2008.

70. PyML toolbox. Available: http://pyml.source-
forge.net. Accessed 11 August 2008.

71. Sonnenburg S, Braun M, Ong C, Bengio S

Bottou L, et al. (2007) The need for open source
software in machine learning. J Mach Learn Res

8: 2443–2466. Available: http://jmlr.csail.mit.
edu/papers/v8/sonnenburg07a.html. Accessed

11 August 2008.

72. Schneider T, Stephens R (1990) Sequence logos:
A new way to display consensus sequences.

Nucleic Acids Res 18.
73. Crooks G, Hon G, Chandonia J, Brenner S

(2004) Weblogo: A sequence logo generator.
Genome Res 14: 1188–1190.

PLoS Computational Biology | www.ploscompbiol.org 10 October 2008 | Volume 4 | Issue 10 | e1000173

