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ABSTRACT

Motivation: Computational approaches to protein function
prediction infer protein function by finding proteins with similar
sequence, structure, surface clefts, chemical properties,
amino acid motifs, interaction partners or phylogenetic profiles.
We present a new approach that combines sequential,
structural and chemical information into one graph model of
proteins. We predict functional class membership of enzymes
and non-enzymes using graph kernels and Support Vector
Machine classification on these protein graphs.

Results: Our graph model, derivable from protein sequence
and structure only, is competitive with vector models that
require additional protein information such as the size of
surface pockets. If we include this extra information into our
graph model, our classifier yields significantly higher accuracy
levels than the vector models. Hyperkernels allow us to select
and to optimally combine the most relevant node attributes in
our protein graphs. We have laid the foundation for a protein
function prediction system that integrates protein information
from various sources efficiently and effectively.

Availability: More information available via
www.dbs.ifi.Imu.de/Mitarbeiter/borgwardt.html.

Contact: borgwardt@dbs.ifi.Imu.de

1 INTRODUCTION

prediction (Whisstock and Lesk, 2003). A newly discovered
protein is predicted to exert the same function as the most
similar proteins in a database of known proteins. This
similarity among proteins can be defined in a multitude of
ways: two proteins can be regarded to be similar, if their
sequencesalignwell (e.g. PSI-BLAST (Altschul etal., 1997)),
if their structures match well (e.g. DALI (Holm and Sander,
1996)), if both have common surface clefts or bindings
sites (e.g. CASTp (Binkowski et al., 2003)), similar chemical
features, or common interaction partners (e.g. DIP (Xenarios
et al.,, 2002)), if both contain certain motifs of amino
acids (e.g. Evolutionary Trace (Yao et al., 2003)), or if both
appear in the same range of species (e.g. Pellegrini et al.
(1999)). An armada of protein function prediction systems
that measure protein similarity by one of the conditions above
has been developed. Each of these conditions is based on
a biological hypothesis; for example, structural similarity
implies that two proteins could share a common ancestor and
that they both could perform the same function as thiscommon
ancestor (Bartlett et al., 2003).

These assumptions are not universally valid. Hegyi and
Gerstein (1999) showed that proteins with similar function
may have dissimilar structures and proteins with similar
structures may exert distinct functions. Furthermore, a single
amino acid mutation can alter the function of a protein
and make a pair of structurally closely related proteins

Understanding the molecular mechanisms of life requiresynctionally different (Wilks et al., 1988). Exceptions are
to decode the functpns of proteins in an organism. Tenssg numerous if similarity is measured by means other
of thousands of proteins have been sequence_d over recean structure (Whisstock and Lesk, 2003). Due to these
years, and the structures of thousands of proteins have begRceptions, none of the existing function prediction systems
resolved so far (Berman et al., 2000). Still, the experimental g, guarantee generally good accuracy.
determination of the function of a protein with known  The remedy is to integrate different protein data sources,
sequence and structure remains a difficult, time- and coste to combine several similarity measures, based on several
intensive task. Computational approaches to correct proteigifferent data types. If two proteins are similar on more
function prediction would allow to determine the function of than one scale, then the prediction of their function will be
whole proteomes faster and more cheaply. . more reliable. In this article, we present how to reach this
Simulating the molecular and atomic mechanisms thafjata integration via two routes: We design a graph model
define the function of a protein is beyond the currentfor proteins that can represent several types of information

knowledge of biochemistry and the capacity of availablegnq e define and employ similarity measures for combining
computational power. Similarity search among proteins with

known function is consequently the basis of current function
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several sources of protein data, namely graph kernels and
hyperkernels.

1.1 Kernel Methods and Support Vector Machines

Kernel methods are a popular method for machine
learning (Scholkopf and Smola, 2002). This paper uses kernel
methods, specifically Support Vector Machines (SVMs), to
perform protein function prediction. We denote By the
space of input data (the proteins) and bythe space of
labels (their function). Denote b¥ := {z1,...,z,,} the
trainingdataand by := {y1, ...,y } asetofcorresponding
labels, jointly drawn independently and identically from some  _|
probability distributiorP (x, y) on X’ x ). For a new example
x € X, the problem is to predict the labglusing our prior
knowledge of the problem and the training examples. Observe
that we do nqt knovP(m,y), and h?nce the. algorlthm has to Fig. 1. The C-SVM maximizes the margin between the training
pe'.rf‘?rm predictions based on the information provided by theexamples and the hyperplane. The solid line denotes the separating
training data. . . . hyperplane and the dashed line denotes the margin. Plus (+) and
Kernel methods have been highly successful in solvingrcie (o) data points represent two distinct classes of input data.
various problems in machine learning. The algorithms work
by implicitly mapping the inputs into a feature space and

finding a suitable hypothesis in this new space. The feature , ,
mapa(-) in question is defined by a kernel functibnwhich chemical and structural features of protein sequence and

allows us to compute dot products in feature space using 0n|9rot.e'in strugture, re.spectiveily; Dobson and [?oig (2(,)03)
objects in the input space, thatir;, ;) := (¢(z:), é(z;)) additionally include information about known interaction

’ iybyg) T 1) 3]/ . . . . .
The kernel function must be positive definite for the SVM. molecules, surface properties and disulphide bonds into their

Examples of positive definite kernels are the Dirac, GaussiaffaiUre vectors. Both then perform SVM classification on

and Brownian bridge kernel (Scholkopf and Smola, 2002). these fgature vectors to predict .pro.tein functign. o
SVMs are based on finding a good linear hypothesis Despite the success of SVMs in biology, their application is

in this feature space (Cortes and Vapnik, 1995). Moredlmost always connected with a transformation of structured

specifically, this solution is the hyperplane which maximizesPiological data into a simplified feature vector description.

the margin in feature space, thereby aiming at separatinS & result, even a complex protein_structurg is _represer_ned
different classes of input data points in feature space. ThBY vector components that summarize detailed information

margin is the maximal distance between a training exampld"t© one simplified total value. To avoid this loss of

in feature space and the separating hyperplane. The caformation, GRATH (Harrison et al., 2002) and SSM
» (Krissinel and Henrick, 2003) represent protein structures

SVM we use in this paper maximizes the “soft margin”,
where instead of disallowing training points from being 25 graphs of secondary structure elements and then perform

misclassified, we penalize misclassification using a lineaf@Ph-matching algorithms to measure structural similarity.

cost. Figure 1 shows a toy example where the soft margir@ur target was therefore to design a kernel function for a

SVM was used for classification. SVMs are an example ofdraph model of proteins that still allows us to perform SVM
classification.

a convex optimization problem (Boyd and Vandenberghe, - . ) ) _

2004). Efficient algorithms exist for solving convex problems, N short, in our project we aimed at the following goals: to

which means that large scale problems can be solved. model proteins using graphs, which is the most adequate data
structure, to include sequence and chemical information into

1.2 Support Vector Machines in Biology the model, and to classify proteins -based on this model- into

Applications of SVM classification in molecular biology their correct functional class.

are numerous and the importance of kernel methods for

bioinformatics is steadily growing (Scholkopf et al., 2004).

Classifying proteins into their functional class has emerge@ APPROACH

as one major field of research in this context. Cai et al. (2004In this section, we design a graph model for proteins, in which

2003) use SVMs to classify protein sequences into enzymaodes and edges of the graph contain information about the
classes. Dobson and Doig (2003) employ SVMs to distinguistsecondary structure of the protein. We modify a graph kernel
enzymes from non-enzymes among protein structures. Botto define a special random walk graph kernel for proteins.

approaches represent proteins as vectors describing physichi,addition, we review the method of hyperkernels which we
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will later apply to select relevant node attributes in our protein
graph model.

2.1 Protein Graph Model

A graphG consists of a set afodegor vertice3 V andedges y
E. An attributedgraph is a graph with labels on nodes and/or ~ Protein secondary sequence structure
edges; we refer to labels a#tributes In our case, attributes ata structure elements
will consist of pairs of the formdttribute-namevalue.

The adjacency matri¥d of G is defined as

Fig. 2. Schematic illustration of graph generation from PDB protein

[A];; = 1 if (viyv5) € E’ file (Berman et al., 2000) (circles = secondary structure elements,
* 0 otherwise ’ thin dashed lines = sequential edges, thick solid lines = structural
edges).

wherev; andv; are nodes irtz. A walk of lengthk — 1ina
graph is a sequence of nodgswvs, - - - , vx Where
(vi—1,v;) € Eforl < i <k,
, ) characterizing a chemical or physical feature of this AA.
Graph Structure of ProteinsWe design our graph models to Normalized Amino Acid indices for hydrophobicity (Cid

contain information about structure, sequence and chemicg), o 1992), van der Waals volume (Fauchere et al., 1988)
properties of a protein. For this purpose, we model protein olarity (Grantham, 1974), and polarizability (Charton and

as attributed and undirected graphs. Each graph represergs, ion 1982) are applied to the sequence of each SSE node
exactly one protein. Nodes in our graph represent secondagy gerive one total value and one 3 bin distribution each.
structure elements (SSEs) within the protein structure, i.e.

helices, sheets and turns. Edges connect nodes if those are

neighbors along the amino acid sequence or if they aré-2 Random Walk Graph Kernel

neighbors in space within the protein structure. Every node i$¢Jsing the attributed graphs model of proteins as defined in

connected to its three nearest spatial neighbors. the previous section, we define a kernel that measures the
Nodes bear a type label, stating whether they represent gimilarity between two protein graphs. We tested several graph

helix, sheet or turn, and physical and chemical informationkernels, of which agraphkernelbased on randomwalks turned

namely the hydrophobicity, the van der Waals volume, theout to be most successful. For the sake of brevity, we present

polarity and polarizability of the SSE represented by this nodethis kernel and its best parameterization only; a technical

One total normalized van der Waals value is determined foreport on the accompanying homepage describes two other

each node individually. Additionally, each node is labeledprotein kernels.

with the total number of its residues with low, medium or Random walk kernels were proposed by Kondor and

high normalized van der Waals volume separately; we willLafferty (2002), Cortes et al. (2003), Gartner et al. (2003)

refer to this as th& bin distribution Analogously, one total and Kashima et al. (2003). Given two labeled graghsand

value and the 3 bin distribution is added to every node foiG2, a random walk kernel counts the numbernsétching

hydrophobicity, polarity and polarizability. The length of labeled random walks. The match between two nodes or two

each SSE in amino acids (AAs) and the distance betweeadges is determined by comparing their attribute values. The

the C, atom of its first and last residue in Angstroms (A) measure of similarity between two random walks is then the

constitute further node attributes, calléd\ lengthand3d  product of the kernel values corresponding to the nodes and

length respectively. edges encountered along the walk. The kernel value of two
Every edge is labeled with its type, i.e. structural orgraphs is then the sum over the kernel values of all pairs of

sequential. Sequential edges are labeled with their length iwalks within these two graphs:

AAs and structural edges with their length in A. The length

of a structural edge between two SSEs is calculated to be the

distance between their centers, where the center of an SSEfigrapn (G1, G2) = Z Z kwaik (walky, walks).

the midpoint of the line between ti&, atom of its first and walki €G1 walkz €Ga

theC,, atom of its last residue.

Graph Generation We generate our protein graphs from An elegantapprqagh byGértneretaI.(ZQOS) for calculating all
protein files of the Protein Data Bank (PDB) (Berman et al.,/andom walks within two graphs uses direct product graphs:
2000) (see Figure 2), except for the chemical and physical

node attributes. We assign these to SSEs using amino acidDefinition 1 (Direct Product Graph)The direct product
indices from the Amino Acid Index Database (Kawashimagraph of two graphs7; = (V, E) and G, = (W, F) shall

et al., 1999), i.e. tables with one value for each amino acide denoted bys; x Gs. The node and edge set of the direct
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product graph are respectively defined as: We define the kernel for each step in the random walk in
Vo (G1x Ga) = {(v,un) €V x W : terms of the original node, the destination node, and the edge

(label(vy) = label(w:))} between them.

Ev(G1 x Go) = {((v1,w1), (va,w2)) € VZ(Gy x Ga) : Definition 4 (Step Kernel)For i € {1,..,n — 1}, the step
(v1,v2) € EA (w1, we) € F kernel is defined as
A(label(vy, va) = label(wy,wa))} Estep((viyvig1), (Wi, wig1)) =
Based on this direct product graph, the random walk kernel Enode (Vi wi) * knode (Vi 1, Wit1)
is defined as *keage ((Vi, Vig1), (Wi, wig1)),
Definition 2 (Random Walk Kernel)Let G, G» be two  Wherekeq,. is defined as
graphs, letA, denote the adjacency matrix of their direct kedge (i, vit1), (Wi, wit1)) =
productA, = A(G; x G2), and letV, denote the node set Etype (Vi Vig1), (wi, wig1))

of their direct product. With a weighting factor > 0 the #Erengtn (Vi vig1), (Wi, wit1))

random walk graph kernel is defined as ) ) )
and fori € {1,..,n}, knode is defined as
Vi

_ ~ n An kno e(vi ’UJZ) =k e(Ui wl)
kx(G1,G2) = AMAT . de\Vi, type Vi,
x(G1,G2) Z [Z x} J *knode labels(Vi, W;) * klength(vi7wi)~
The matching between nodes and edges is therefore defined
via three basic types of kernels: type kernels, length kernels
and node labels kernels, which we explain and define in the
r]following.

i,j=1 n=0

Nodes and edges in graggh, x G have the same labels
as the corresponding nodes and edgé&s,imndG,. Random
walks of lengthn are weighted by in the sum over all walks.
Hence\ must be chosen carefully for the sum to converge. |
this paper, to simplify the approach, we calculate the randonType Kernel Identical motifs of SSEs both within protein
walk kernel for walks up to a predetermined length only.  structure and along the amino acid chain are strong hints at
2.3 Protein Graph Kernel struct_ura_l and functional relat|0n_sh|p; mos_t_ databases group

. . ) o ) proteins into structural and functional families by secondary
The graph kernel defined in the previous section is designeg;,cture content analysis (SCOP (Andreeva et al., 2004),
for discrete attributes: Attributes of two nodesandw; are CATH (Orengo et al., 2003)). Hence we introduce a type
considered similar if they are completely identical, i.e. theYkerneI that makes sure that a step in a random walk in two

are compared via a Dirac kernel. The nodes in our prote|ri1nput graphs can only be performed if both edges are of the

graphs contain continuous attributes which are almost never, o type, i.e. both sequential or both structural, and both

completely identical between two nodes. For that reason, W8rigin nodes and both target nodes are of the same type, i.e.
replaced the Dirac kernel by more complex kernels whichy, iy sheet or turn.

reflect biological knowledge about protein structure. In the o _ . . '
following, we will define a modified random walk kernel that ~ Definition 5 (Type Kernel).k,,. is defined identically for

measures similarity between protein graphs. both nodes and edgesandz’:

Definition 3 (Modified Random Walk Kernel)Let G; = Keype (2,2 = { 1 if type(z) = type(z'),
(V,E) andGy = (W, F) be graphs as above. Consider two ! 0 otherwise
walks, walk; = (v1,v2,...,vn-1,v,) IN Gy andwalky =  Length Kernel Length kernels ensure that we do not count
(w1, w2, ooy wy—1,wy) IN G Wherev; € V, w; € W for  SSEsoredges as being similar that differ a lotin size. Insertion
i € {1,...,n} and (v;,viy1) € E, (wi,wiy1) € F for  and deletion of amino acid residues might change the length
i €{1,...,n —1}. The walk kernel will now be defined as  of SSEs or their distance towards each other, while the overall

fold and function of the protein remains unchanged. For this
reason, we employed the Brownian bridge kernel, that assigns
As above, the modified random walk graph kernel is then théhe highest kernel value to SSEs and edges that are identical
sum over all kernels on pairs of walks in two input graphs. Itin length and assigns zero to all SSEs and edges that differ in
can be computed as in Definition 2 if we modify the definitionlength more than by a constantThis maximum difference

of the adjacency matrix of the direct product graph such thatconstantc was set to 2 AA for sequential edges, to 2 A for
structural edges and to 3 A for SSE nodes.

kwaik(walky, walks) = TT72" Eotep((vi, vis1), (wi, wit1))

ksmp((vivvj)a(wiawj)) o ) ) ) )
[Ax] (i wi), (v ,05)) = if ((vi,v5), (Wi, w;)) € Ex, Definition 6 (Length Kernel).k;c, 4.1, 1S defined identically
0 otherwise for both nodes and edgesandx’, except for the value of

withEy, = E (Gl XGQ) and(vi, Uj) S Eand(wi,wj) e F. kl@ngth(m’ CL‘/) = max(O,c - |length(x) - length(x’)\).
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Node Labels KernelWe compare the physico-chemical joint kernel that performs better than any kernel on a single
features of two secondary structure elements via a node labetigpe of data. One systematic technique which can assist in
kernel. We chose this kernel to be Gaussian, since these halgarning kernels are hyperkernels (Ong et al., 2003; Ong
shown the best performance in related studies (Cai et aland Smola, 2003), which use the idea of defining a kernel
2004);0 was set to 13 by cross-validation. on the space of kernels itself. We ‘learn’ this kernel by
defining a quantity analogous to the risk functional, called
the quality functional, which measures the ‘badness’ of the
Y%ernel function. The purpose of this functional is to indicate
the quality of a given kernel for explaining the training data
\[labels(z) — labels(z')||? at hand. Given a set of input data an.d their associated labels,
- 952 ) . and a class of kernel€, we would like to selept the pest
kernelk € K for the problem. However, if provided with a
It is essential to show that this modified graph kernel is stillsufficiently rich class of kernels, it is in general possible to
a valid positive definite kernel. find a kernel that overfits the data. Therefore, we would like
-~ _ to control the complexity of the kernel function. We achieve
Lemma 8. The modified random walk graph kemel is this by using the kernel trick again on the space of kernels.
positive definite. This so called hyperkernet defines an associated hyper

Proof. The type kernel is a Dirac kernel, the length kernelRéproducing Kernel Hilbert Space (hyper-RKHE) This
a Brownian bridge kernel and the node labels kernel allows for simple optimization algorithms which consider
Gaussian kernel; these kernels are known to be positivkernelsk in the hyper-RKHSH, which are in the convex
definite (Schélkopf and Smola, 2002). Since pointwisecone of k. Analog?us o the regularized ”fk fu2nct|onal,
multiplication preserves positive definiteness, node kernelftres(f, X, Y) = 53 0 Uwi, yi, f(2:)) + 5|fII°, we
edge kernel and step kernel are consequently positive definitéegularize the empirical quality function@ery (k, X, Y').
) We can now define a positive definite kernel on walks, pefinition 9 (Regularized Quality Functional).
kfﬁmr which is identical to our walk kerndl,,.;;; for pairs \
of wallgs(jg)f I.engthj and zero otherwise (Kashima et al., Qreg(k, X, Y) := Qomp (k, X, V) + 7Q||k||2ﬂ (1)
2003). k., is a tensor product of step kernels (Scholkopf
and Smola, 2002) for walks oflengﬂwhwh iszero-extended \yhere), > 0 is a regularization constant anjgk||2, denotes
to the whole set of pairs of walks; hence it is positive ina RKHS norm irH. -

definite (Haussler, 1999%.,.;x as the sum over aﬁ:fjilk

is therefore a valid kernel. Minimization of Q.. is less prone to overfitting than
The positive definiteness of the modified random walkmMiniMizing Qemp, Since the regularizetg | k|3, effectively
kernel follows directly from its definition as a convolution controls the complexity of the class of kernels under

kernel, proven to be positive definite by Haussler (198).  consideration. The minimizer of Equation (1) satisfies the
. . ) representer theorem:
Computing a kernel matrix entry for our protein graph

kernel may seem expensive, as kernel functions on all nodes Theorem 10 (Representer Theoren)enote by’ a set,
and edges have to be evaluated. The high selectiveness gjpd byQ an arbitrary quality functional. Then each minimizer
length and type kernel, however, which set many step kerndf € 2t of the regularized quality functional 1, admits a
values to zero, can be exploited to reduce computational costé€Presentation of the form

Definition 7 (Node Labels Kernel)The node labels kernel
knode 1abels IS @ Gaussian kernel over two vectors representin
the values of all labels of nodeand noder’:

/
knode labels(xa x ) = exp <

thereby enhancing speed and scalability. Computation of the m
graph kernel matrix scales linearly with the number of its k(z,2') = Z Bi ik((zs,25), (x,2")). 2
entries. For efficient and scalable SVM training, one can use =1

low rank representations (Fine and Scheinberg, 2001). ) o
This shows that even though we are optimizing over a whole

2.4 Hyperkernels for Choice of Best Kernel Hilbert space of kernels, we still are able to find the optimal
Our protein random walk graph kernel consists of asolution by choosing among a finite number, which is the span
combination of a multitude of kernels on a multitude of graphof the kernel on the data.

attributes. We are interested in how to optimally combine these We use Semidefinite Programming (SDP) formulations of
kernels on graph attributes as choosing a suitable graph kernsle optimization problems arising from the minimization of

function is imperative to the success of our classifier andhe regularized quality functional (Ong and Smola, 2003).
function prediction system. Lanckriet et al. (2004) showedSemidefinite programming is the optimization of a linear

that kernel learning can be used to combine different databjective function subject to constraints which are linear
sources for protein function prediction in yeast to yield amatrix inequalities and affine equalities.
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In this section, we define the following notation. For Kernel type Accuracy | St. dev.
p,q,vr € R",n € Nletr = po g be defined as element Vector kernel 76.86 1.23
by element multiplicationy; = p; x ¢;. The pseudo-inverse Optimized vector kernel 80.17 1.24
(or Moore-Penrose inverse) of a matriX is denoted by Graph kernel 77.30 1.20
K. Define the hyperkernel Gram matriX by Ky = Graph kernel without structuje ~ 72.33 5.32
k((zi,zj), (xp,74)), the kernel matrixik = reshapek 3) Graph kernel with global info 84.04| 3.33
(reshaping anm? by 1 vector, K3, to anm x m matrix), DALI classifier 75.07 4.58

Y = diag(y) (a matrix withy on the diagonal and zero

. - . Table 1. Accuracy of prediction of functional class of enzymes and non-
otherW|se),G(ﬂ) = YKY (the dependence ofl is made enzymes in 10-fold cross-validation with C-SVM. The first two results are

explicit), andl a Ve(?t(?r of ones. . the results obtained by Dobson and Doig (2003). "Graph kernel” is our protein
The number of training examplesis assumed tab®/here  kernel defined as in Section 2.3, "Graph kernel without structure” is the same

appropriate,ry is a Lagrange multiplier, Whiley andg are kernel but on protein models without structural edges, "Graph kernel with

vectors of Lagrange multipliers from the derivation of the global info” is our protein graph kernel plus additional global node labels.
. . "DALI classifier” is a Nearest Neighbor Classifier on DALI Z-scores.

Wolfe dual for the SDPj are the hyperkernel coefficients,

andts are the auxiliary variables.

Example 1 (Linear SVM (-style)). A commonly used
support vector classifier, the-SVM uses aif; soft margin, Experimental setting

wherel(z;, yi, f(2:)) = max(0, 1 — yi f(x:)), which allows g4 the following experiments, we implemented our graph
errors on the .trammg set.. The pa_trameté]‘ is given by model and kernel in MATLAB® R13, and employed the
the user. Setting the quality function@em,(k, X,Y) = gyM package SVLAB. We ran our tests on Debian Linux

. 1 m 1 2 i
glé)ngﬁﬁ i it Hwi,yi, f(2:)) + 561wl the resulting  \yorkstations with Intel Pentium 4® CPU at 3.00 GHz.
is

. 1 C¢T CA
guin gt + R+ S50 3.1 Enzymes vs. Non-Enzymes
subject to n 21075 >0,620 In our first test, we classified enzymes versus non-enzymes.
IK28| < to (3 our dataset comprised proteins from the dataset of enzymes
G(B) = -0 (59%) and non-enzymes (41%) created by Dobson and Doig
20t | T (2003). Protein function prediction on this set of proteins is
wherez = vy + 1 +1n — €. particularly difficult, as Dobson and Doig chose proteins such
The value of which optimizes the corresponding Lagrange that no chain in any protein aligns to any other chain in the
function is G(8)'z, and the classification functionf = dataset with a Z-score of 3.5 or above outside of its parent
sign(K (o y) — bogser), i given byf = sign(KG(B)t(yo  Structure. _ _ _
2) — ). . Dobson and Doig model proteins as feature vectors which

indicate for each amino acid its fraction among all residues,

We apply hyperkernels in Section 3.2 in two ways: first t0ijts fraction of the surface area, the existence of ligands, the
combine the various attribute kernels in an optimal fashionsjze of the largest surface pocket and the number of disulphide
and second to investigate the weights of the various attributeg,gnds.
From the representer theorem 10, the kernels on various on the complete dataset, Dobson and Doig had reached
attributes are weighted in the final optimal kernel, and henceg 869 accuracy in 10-fold cross-validation, on an optimized
the weights reflect the importance of that particular attributesypset of their attributes, they improved their accuracy to
for protein function prediction. The higher the weight of the gg 179 in 10-fold cross-validation.
kernel of an attribute in the final linear combination, the \we created protein graphs for all proteins from their dataset
more important it is for good prediction accuracy. Similar for which the secondary structure is given in the corresponding
to Ong and Smola (2003), we use a low rank approximatiorppg file. This meant that we could use 1128 out of 1178
for our optimization problem, hence resulting in a scalableproteins for our tests (the fraction of enzymes remained at
implementation. The computational cost is a constant factosgos). On these protein graphs, we calculated our protein
larger than a standard SVM, where the constant is determingdndom walk graph kernel. We performed 10-fold cross-

by the precision of the low rank approximation. validation using C-Support Vector Machine (C-SVM (Cortes
and Vapnik, 1995)) classification and report the results in
3 RESULTS Table 1. As a comparison, we implemented and ran a Nearest

To assess the protein function prediction quality of our grapiNeighbor Classifier based on DALI Z-scores (Holm and
kernels, we tested them on two function prediction problemsSander, 1996) on the same dataset.

classifying enzymes versus non-enzymes, and predicting the Our results show that our graph kernel is competitive with
enzyme class. the existing vector kernel approach, although it relies on less
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information than the vector approach. Our graph model can bélefined as in section 2.3) on these single attribute models,

generated from sequence and structure, while the vector modebrmalized them and employed a hyperkernel to find an

requires additional information about ligands, surface cleftoptimal linear combination of these ten normalized kernel

and bonds of the proteins in question. Furthermore, our grapmatrices. As a comparison, we also ran our default protein

kernel gives also better results than the DALI classifier, whichgraph kernel with all node attributes on the same dataset.

is based on state-of-the-art structure comparison results.
These results suggest two further experiments: First, to

check whether we can reach similarly good results if we do no 95 O AA length
include structural edges into our protein model. This kind of ~ 94.5 B3 bin Waals
graph model could be generated without knowing the structur 941 —|®@3 bin Hydro
of a protein, relying solely on the sequence and onaseconda ., 93-3 1//@3 bin Polarity
structure prediction system. We tested our kernel on graph & 93 /@3 bin Polariz.
without structural edges and found a significant deterioratior g 92-2 || ®3d length
to 72.33% prediction accuracy (see Table 1). & 92 /@ Total Waals
Second, we tested whether our protein classifier coulc  91-97 I || 0 Total Hydro
be improved by incorporating Dobson and Doig’s extra 91 I | ® Total Polarity
information. We extended our protein graphs to include 90.5 i |0 Total P_°'a'iz-
additional information as node labels. Theglebal node 90° EC 1 EC 2 EC3 O All attributes
attributes are the same for all nodes in one graph; the O Hyperkernel
represent the existence of ligands, the number of disulphid 95- —
bonds, the size of the largest surface pocket (Binkowsk 94.5- H
et al., 2003) and the fraction of each amino acid type or 94
the protein surface (Tsodikov et al. , 2002), analogous tc 9351 1
(Dobson and Doig, 2003). On this protein graph model with & g3 | i
global information, we improved our classification accuracy g 9251 |
to 84.04% (see Table 1). This is highly significantly better § 92 |
(with Yates’ correcteqt® = 18.56 andp = 0.00002) than the < 915/ |
standard vector kernel which has an accuracy of 76.86%. Thi :
is also significantly better (with Yates’ correctgd = 5.71 | |
andp = 0.0169) than the vector kernel on an optimized subset 9(;2 |
of attributes which has an accuracy of 80.17%. EC4 EC5 EC6 all

3.2 Enzyme Class Prediction

After showing that our graph classifier reaches at Ieasfigj 3. Prediction accuracy using kernel matrices on individual
state-of-the-art prediction accuracy, we examined which o ttributes, one kernel on all gttnputes and the hyperkernel (see
our ten local node attributes contribute most to successfu[ xample 1) in 6-fold Sross.'va"datlon on 690 enzymes from 6 EC
. . ) op level classes (AA = amino acid, Waals = van der Waals volume,
cla§sn‘|cat|on. The. stgr_ldard approach to this problem is t‘ﬁydro. = Hydrophobicity, Polariz. = Polarizability).
define kernels on individual node attributes and to then test
the performance ofthese kernels on a test set. Attributes whose
kernels show best classification accuracy in these tests aretherFor each EC class, we conducted 1-vs.-rest SVM
deemed to be most important for good prediction accuracy. classification for all our kernels and the hyperkernel, in 6-
We propose to employ hyperkernels for selecting relevanfold cross-validation on all 600 proteins. As the number of
node attributes. The hyperkernel finds a linear combinatiomon-members of an EC class is five times that of the members
of kernels defined on single node attributes that maximize both training and test set, a naive classifier predicting all
prediction accuracy. Node attributes receiving highest weighenzymes to be non-EC-class-members would always yield
in the hyperkernel optimal combination can then be regarde83.33% accuracy. We report classification results in Figure 3
as most valuable for correct classification. and hyperkernel weights in the optimal linear combination in
For that purpose, we created protein graph models with onlyfable 2.
one of our ten node attributes each for a dataset of 600 enzymesOur results show that with each of the kernels employed,
from the BRENDA database (Schomburg et al., 2004). Thisve are able to correctly predict enzyme class membership and
dataset included 100 proteins from each of the 6 Enzym@on-membership with a high accuracy level of at least 90.83%
Commission top level enzyme classes (EC classes) and tlmn average. The hyperkernel performs on average best of all
goal was to correctly predict enzyme class membership fokernels. Across all EC classes, the hyperkernel reaches at least
these proteins. We computed protein graph kernel matricethe accuracy of the best individual kernel, i.e. the hyperkernel
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technique succeeds in finding an optimal linear combinatiorthe graph kernel to first detect structural and sequential
ofinput kernels. The hyperkernel performs even slightly bettesimilarities between proteins and if these are found, to then

than our original kernel with all attributes. measure the degree of similarity by comparing physico-

chemical properties of their secondary structure elements.
Attribute EC1IEC2IEC3|ECAIECEEC6 Combining these three types of similarity measures into one
AA length 1.00/ 0.31] 1.001 .00 0.73] 0.00 graph kernel allows us to distinguish enzymes and non-

enzymes on the same accuracy level as a vector kernel method
requiring additional information and a DALI classifier based
on Z-scores; our kernel outperforms both if we use a protein
graph model including all extra information used by the vector
kernel approach. We conclude that our model is able to
capture essential characteristics of proteins that define their
function. Furthermore, we showed that structure information

3 bin Waals | 0.00| 0.00| 0.00| 0.00| 0.00| 0.00
3 bin Hydro. | 0.00| 0.00| 0.00| 0.00| 0.00| 0.00
3 bin Polarity| 0.00| 0.01| 0.00| 0.00| 0.00| 1.00
3 bin Polariz.| 0.00| 0.00| 0.00| 0.00| 0.12| 0.00
3d length 0.00| 0.40| 0.00| 0.00| 0.00| 0.00
Total Waals | 0.00| 0.00| 0.00| 0.00| 0.00| 0.00

Total Hydro. | 0.00] 0.13) 0.00] 0.00] 0.01} 0.00 is beneficial for our classifier, as removing structural edges
Total Polarity| 0.00| 0.14| 0.00 0.00| 0.01| 0.00 from our graphs decreases prediction accuracy significantly.
Total Polariz.| 0.00| 0.01] 0.00| 0.00| 0.13] 0.00 We successfully applied the hyperkernel technique to the

Table 2. Hyperkernel weights for individual node attributes (AA = amino question of how to choose relevant node attributes in our

acid, Waals = van der Waals volume, Hydro. = Hydrophobicity, Polariz. = . . .

Polarizability). protein graphs and of how to combine these optimally.
Consequently, hyperkernels are a useful tool to further
optimize our graph model by weighing the importance of
individual node attributes for correct classification.

The hyperkernel assigns on average the highest weightto thepe hyperkernel assigns on average highest weight to
node attribute amino acid length. Results differ significantlythe node attribute amino acid length. Functional similarity
between EC classes. While in EC classes 1, 3 and 4 attribuigstween proteins seems to be closely linked to the question
AA length receives the maximum weight of 1.00, 3 bin \yhetherthe secondary structure elements of these proteins are
polarity receives maximum weight for EC class 6. This isequally long. This finding is consistent with the observation
consistent with the observation that the 3 bin polarity kerneknat the structure of a protein - which includes the length of
reaches the maximum prediction accuracy for EC class §s secondary structure elements - is the biggest hint at its
among all attribute kernels. In EC class 2 and EC class 5, thgnction (Bartlett et al., 2003). The fact that the node attribute
hyperkernel detects a combination of several attribute kernel’§30|arityn is most important for classifying enzymes from

yielding the maximum accuracy. EC class 6 illustrates that approximate chemical properties of
proteins can also help to identify protein function. In addition,
4 DISCUSSION hyperkernels will allow us to combine our protein graph

In this paper, we presented a graph model for proteingnformation with other proteomic information to improve our

and defined a protein graph kernel that measures similaritglassifier.

between these graphs. Based on this protein graph model andruture work will aim at refining our protein graph model

kernel, we implemented a Support Vector Machine classifieby adding more node and edge labels and at integrating

for protein function prediction. We successfully tested themore protein information into our classifier to make function

performance of this classifier on two function prediction taskspredictions more accurate. Attributed graphs, our protein
Our graph model includes information about sequencegraph kernels and hyperkernels will be essential for this

structure and chemical properties, with nodes that represeprocess of data fusion.

secondary structure elements and edges that represent

sequential or spatial neighborship between these elements.

Graph models based on smaller subunits of proteins, amino

acid residues or atoms, might give a more detailed description

of the chemical properties of a protein, yet they would leadACKNOWLEDGEMENTS
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