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Abstract—The precision-recall curve (PRC) has become a
widespread conceptual basis for assessing classification perfor-
mance. The curve relates the positive predictive value of a
classifier to its true positive rate and often provides a useful
alternative to the well-known receiver operating characteristic
(ROC). The empirical PRC, however, turns out to be a highly
imprecise estimate of the true curve, especially in the case of
a small sample size and class imbalance in favour of negative
examples. Ironically, this situation tends to occur precisely in
those applications where the curve would be most useful, e.g., in
anomaly detection or information retrieval. Here, we propose
to estimate the PRC on the basis of a simple distributional
assumption about the decision values that generalizes the
established binormal model for estimating smooth ROC curves.
Using simulations, we show that our approach outperforms
empirical estimates, and that an account of the class imbalance
is crucial for obtaining unbiased PRC estimates.
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ceiver operating characteristic; false discovery rate; informa-
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I. INTRODUCTION

Computing a meaningful estimate of generalizability is a
key requirement for evaluating the performance of a clas-
sification algorithm [1]. In the case of binary classification,
in particular, the empirical accuracy (the number of correct
predictions divided by the number of test cases) frequently
serves as an indicator of overall performance. However,
looking exclusively at accuracies has, among others, the
following two limitations [2]. First, an accuracy found to
be significantly above 50% may be the result of a biased
classifier tested on an imbalanced dataset [3], [4]. Second,
the overall accuracy does not distinguish between the types
of error that have been made. Whenever different costs are
to be associated with different types of misclassification, a
summary statistic is required that measures the performance
of a classifier independently of how sensitivity and speci-
ficity are to be traded off.

One solution is to analyse the receiver operating character-
istic (ROC) of a classifier [5], [6]. This analysis is not based
on the binary predictions that the classifier made for each
test case but on the ranked set of examples, as established by
the underlying decision values, i.e., the internal scores that
were computed for each example before applying a decision
threshold. The ROC curve relates the true positive rate (TPR)
to the false positive rate (FPR) obtained at every possible

threshold. Thus, it provides an insight into the performance
of a classifier that is independent of its detection threshold.

An increasingly popular alternative is to plot the TPR
(also known as recall) against the positive predictive value
(PPV), that is, the fraction of true positives in relation to all
positive predictions (also known as precision). Comparing
the TPR with the PPV has proven particularly useful in
applications where the overall number of positive examples
is small [7], e.g., in information retrieval. Replacing the FPR
by the PPV turns the ROC curve into the precision-recall
curve (PRC) and the area under the ROC curve (AUC) into
the area under the PRC, also known as the average precision
(AP).

Occasionally, the TPR is not plotted against the PPV
but against the false discovery rate (FDR). However, since
PPV=1−FDR, the two approaches are equivalent [7]. Thus,
all concepts developed in this paper can be applied to both
PRC and FDR curves.

In principle, the PRC could be constructed in the same
way as the ROC curve: by varying the threshold and plotting
the resulting empirical rate measures. In practice, however,
estimating an empirical PRC is problematic as its shape is
highly sensitive to idiosyncracies in the data, especially at
high precisions, where the curve is most interesting [8], [9].
One way of addressing this problem is to resort to nonpara-
metric approaches for deriving a smooth PRC estimate [9].

Here, we propose to replace the empirical PRC by a
smooth estimate based on a simple distributional assump-
tion. We begin by briefly reviewing the well-known binormal
model for estimating smooth ROC curves (Section II). We
then develop the main contribution of this paper. Unlike
ROC curves, PRCs heavily depend on the degree of im-
balance in the data. We therefore extend the model by
also estimating the degree of class imbalance in the data
(Section III). Based on this model, we derive an estimate of
the PRC and the AP. Using simulations, we compare the two
models, illustrate the impact of class-imbalance estimation
on the PRC (Section IV), and briefly discuss our findings
(Section V).

II. THE RECEIVER OPERATING CHARACTERISTIC

In a binary classification setting, the receiver operating
characteristic (ROC) provides a way of looking at the per-
formance of a classifier that is independent of any particular
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Figure 1. Simulation of empirical and model-based performance curves. Based on a set of generated decision values (a), the two diagrams in (b) and (c)
show the difference between empirical curves (solid red), model-based curves based on the binormal model (dash-dotted blue), and model-based curves
based on the α-binormal model (dotted green), in relation to ground truth (solid black). The inset in (b) shows the difference (mean difference +/− 2
standard errors of the mean difference) between AUC estimates and ground truth across a set of 1,000 simulations.

decision threshold. Given n test cases, it is constructed
by considering, at each possible threshold, the empirical
confusion matrix that results from classification:

actual + actual −
predicted + TP FP
predicted − FN TN
total P N

In particular, the following threshold-dependent perfor-
mance measures are commonly used:

Accuracy ACC =
TP + TN

n
(1)

True positive rate TPR =
TP

P
(2)

False positive rate FPR =
FP

N
(3)

Positive predictive value PPV =
TP

TP + FP
(4)

Derived from these quantities, the ROC curve is a plot
of TPR vs. FPR across different thresholds [5], [6]. Thus,
unlike the accuracy, it provides a threshold-independent way
of assessing classification performance. A useful summary
is provided by the Wilcoxon-Mann-Whitney statistic, more
commonly known as the area under the ROC curve (AUC).

Given the decision values that were assigned to a set of
test examples, we can compute empirical estimates for the
TPR and the FPR, based on the confusion matrix that results
from a given threshold t.

The main drawback of this approach is that the entries
in the confusion matrix only change when t crosses one of
the decision values. Thus, the empirical ROC curve suffers
from a jagged appearance, especially when based on small
datasets.

A well-known remedy is to replace empirical ROC curves
by smooth estimates based on a simple parametric assump-
tion about the underlying decision values [10], [6]. Based
on a continuous decision threshold t, let F+(t) and F−(t)
denote the resulting cumulative distribution functions of
the positive and negative populations of decision values,
respectively. Further, let α ∈ (0, 1) be the fraction of positive
examples. The confusion matrix can then be rewritten in a
parametric form:

actual + actual −
predicted + α(1−F+(t)) (1− α)(1−F−(t))
predicted − αF+(t) (1− α)F−(t)
total α 1− α

Specifying the confusion matrix in this way yields two
insights. First, neither TPR nor FPR depend on α. Thus,
both the ROC curve and the AUC are independent of
class imbalance, and so our model-based approach to their
estimation does not need to estimate α. Second, eliminating
t in the above equations leads to a simple description of the
continuous ROC curve [6],

TPR = 1−F+

(
F−1

− (1− FPR)
)
, (5)

where, so far, all quantities are independent of a particular
distributional assumption.

The binormal model

A natural way of deriving a specific instance of the
parametric confusion matrix described above is to assume
that decision values follow two independent Gaussian dis-
tributions: one for negative examples, and one for positive
examples. This assumption leads to what is known as the
binormal model [10]. Intriguingly, smooth ROC estimates
on the basis of the binormal model are unaltered if decision
values undergo a strictly increasing transformation, which
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means the binormal assumption has a broad domain of
application [6, Section 2.5].

III. THE PRECISION-RECALL CURVE

Although the ROC curve may be helpful in assessing
the performance of a classifier independently of any given
threshold, there are many situations in which additional
measures are required. For example, when it comes to
searching for relevant documents (information retrieval) or
recognizing rare events (anomaly detection), the available
data is typically heavily imbalanced in favour of the negative
class. As a result, a classifier may perform poorly despite
a superior AUC [3], [4]. In these cases, the precision-recall
curve (PRC), which plots PPV vs. TPR across all thresholds,
represents a more natural way of looking at classification
performance [7], [8]. For example, it can be used to assess
the recall under a given level of precision (e.g., PPV ≥
90%), or to compute the area under the PRC, termed the
average precision (AP). Note again that the PRC is formally
equivalent to the false discovery rate (FDR) curve which is
occasionally used instead and in which the AP is known as
the area under the FDR curve.

We will now proceed to the main contribution of this
paper, the proposition of a simple scheme for computing
a smooth estimate of the PRC.

The α-binormal model

The binormal model does not include an estimate of the
degree of class imbalance. This is because there is no need
to consider the relative size of classes as long as we are
concerned with imbalance-independent quantities such as the
ROC curve or the AUC. However, when considering the
PRC or the AP, this is no longer the case.

In order to derive smooth estimates of performance mea-
sures independently of whether or not they are sensitive to
the degree of class imbalance, we propose to extend the
binormal model by explicitly estimating not only the mo-
ments of the two Gaussians but also the mixture parameter
α. We refer to this model as the α-binormal model. Given
a set of maximum-likelihood parameter estimates (µ̂+, σ̂2

+,
µ̂−, σ̂2

−) describing the mean and variance of the two class-
conditional Gaussians, the model yields

actual + actual −
predicted + α (1− Φ+(t)) (1− α) (1− Φ−(t))
predicted − αΦ+(t) (1− α)Φ−(t)
total α 1− α

where Φ+(·) and Φ−(·) are short for the Gaussian cumu-
lative distribution functions Φ(·; µ̂+, σ̂

2
+) and Φ(·; µ̂−, σ̂

2
−),

respectively. Thus, the α-binormal model allows us to con-
struct a parametric confusion matrix that takes into account
the degree of class imbalance observed in the given set of
decision values. Based on this confusion matrix, we can

write down the generic expression of the PPV (4) as a
function of a particular decision threshold t,

PPV = α(1−Φ+(t))
α(1−Φ+(t))+(1−α)(1−Φ−(t)) , (6)

where α is the fraction of positive examples in the data.
Using TPR = 1−Φ+(t), we can eliminate t and derive the
functional form of the PRC as

PPV = α TPR

α TPR+(1−α)(1−Φ−(Φ−1
+

(1−TPR)))
, (7)

corresponding to (5). Finally, as illustrated in Section IV,
we can numerically approximate the integral∫ 1

0

PPV (TPR) d TPR, (8)

to obtain an estimate of the average precision (AP). Note
that this quantity is identical to the area under the false
discovery rate (FDR) curve. MATLAB code for estimating
performance measures based on the α-binormal model is
available online.1

IV. SIMULATIONS

The utility of computing smooth estimates of the PRC
could be illustrated using real-world data, but the comparison
of smooth estimates with ground truth critically requires
simulations. Here, we present two such simulations. First,
we will look at the difference between empirical and model-
based PRCs. Second, we will illustrate how the degree of
class imbalance impacts on the bias in the estimate of the
area under the PRC.

Empirical vs. model-based PRCs

In order to illustrate the difference between empirical and
smooth estimates of the ROC curve and the PRC, we gener-
ated 100 decision values, including 60 values for a negative
class (µ−=−1, σ−=2) and 40 decision values for a positive
class (µ+ = 1, σ+ = 2). The density functions as well as
the resulting histograms are shown in Figure 1a. Mimicking
real-world data (which may be Box-Cox transformed [11]
in case of concerns about their normality), our simulated
classes were neither heavily imbalanced nor completely
balanced, and neither well-separated nor indiscriminable.

The empirical ROC curve and its model-based counter-
parts are shown in Figure 1b. While the empirical curve
(dotted red line) represents but a rough approximation to
ground truth (solid black line), the smooth curves provide
much better estimates (blue and green lines). Note that
the binormal model and the α-binormal model account for
identical predictions in this case since the ROC curve is in-
dependent of the degree of class imbalance (see Section II).
The inset shows the mean difference between the estimated
and the true AUC, based on 1,000 simulations, indicating

1 http://people.inf.ethz.ch/bkay/downloads
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Figure 2. Effect of class imbalance on the area under the PRC. The smallest
bias is exhibited by the PRC based on the α-binormal model (green) which,
in particular, is significantly below the bias of the empirical curve when
the data are imbalanced in favour of the negative class.

that neither the empirical (red) nor the model-based approach
(blue and green) is biased.

The differences between the three types of estimation
become apparent in the case of PRCs. As shown in Fig-
ure 1c, the empirical PRC is spiked and uneven, especially
at low TPRs where single false discoveries elicit huge
jumps. The binormal model, since it ignores class imbalance,
overestimates the true curve. Only the α-binormal model
provides a decent approximation to the true curve.

The impact of class imbalance on the AP

While the ROC curve is independent of class imbalance,
the PRC is not. Based on 1,000 simulations for each point
on the x-axis, we plotted the mean AP against the degree
of class imbalance with which the underlying data was
generated. As shown in Figure 2, the binormal model is only
unbiased when classes are perfectly balanced (α = 0.5).
Much better predictions are afforded by the α-binormal
model, whose estimates become unstable only when the
number of positive examples is extremely small. Interest-
ingly, when averaged over many simulations, the empirical
AP provides an estimate almost as good as the α-binormal
model, though its positive bias is more pronounced.

V. DISCUSSION

Performance measures based on the precision-recall curve
(or, equivalently, the false discovery rate curve) are helpful
alternatives to the well-known ROC curve. However, em-
pirical approaches to their estimation suffer from practical
limitations, especially in the case of a small sample size
and class imbalance in favour of negative examples. In this
paper, we have shown that a model-based estimate can be
computed on the basis of a distributional assumption about
the underlying decision values and an explicit estimation of
the class-mixture parameter α. Unlike more sophisticated
nonparametric approaches [9], our scheme is simple and
computationally inexpensive.

Using simulations, we chose to present data for the PRC
and the AP. Generally, any other measure based on the

comparison of two ranked sets could be investigated under
the same smoothing scheme. Crucially, unlike the binormal
model, the use of the α-binormal model is not restricted
to quantities that are independent of α but may serve to
compute smooth estimates of any quantity derived from the
confusion matrix.

An important next step is to analyse in more detail the
convergence rate of the scheme proposed in this paper. Fur-
ther, while a simple analytical form exists for the AUC [6],
to our knowledge no corresponding quantity has yet been
proposed for the AP. These questions will be investigated in
future studies.
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