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Abstract—Evaluating the performance of a classification
algorithm critically requires a measure of the degree to which
unseen examples have been identified with their correct class
labels. In practice, generalizability is frequently estimated
by averaging the accuracies obtained on individual cross-
validation folds. This procedure, however, is problematic in two
ways. First, it does not allow for the derivation of meaningful
confidence intervals. Second, it leads to an optimistic estimate
when a biased classifier is tested on an imbalanced dataset.
We show that both problems can be overcome by replacing
the conventional point estimate of accuracy by an estimate of
the posterior distribution of the balanced accuracy.
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I. INTRODUCTION

Using a meaningful measure of generalizability is a key
requirement for evaluating the performance that a classi-
fication algorithm has achieved on a given dataset. Since
the true ability of an algorithm to correctly predict class
labels of unseen data could only be determined if an infinite
amount of test data was available, generalizability has to
be approximated by an estimate instead (see [1] for an
overview). Repeatedly splitting up the available data into
a training set and a test set by means of cross-validation
is a popular procedure for this, though it leaves an im-
portant question unanswered: based on a set of fold-wise
cross-validation results, which measure of generalizability
should be reported? In most classification settings, there
is no specific need to impose different costs on different
types of misclassification, and so the overall accuracy is
of primary interest. In these cases, the most commonly
adopted approach for summarizing cross-validation results
is to report the average accuracy (or average error) across
all folds. However, measuring performance in this way has
two critical shortcomings. First, because the approach is non-
parametric, it does not make it possible to compute mean-
ingful confidence intervals of a true underlying quantity. In
particular, computing the standard error of the mean across
all folds is intrinsically flawed as it enforces symmetric
limits and may lead to confidence intervals of accuracy
including values above 100%. The second flaw in consid-
ering the average accuracy is that it may give a misleading
idea about generalization performance in situations where a
biased classifier is tested on an imbalanced dataset. Under

these conditions, the average accuracy may lead to false
conclusions about the significance with which an algorithm
has performed better than chance.

In this paper, we argue that both shortcomings can be
overcome by replacing the average accuracy by the posterior
distribution of the balanced accuracy. In order to keep our
treatment self-contained, we begin by briefly reviewing the
current state of the art. Specifically, instead of giving a
point estimate of the accuracy, we describe the well-known
approach of estimating the posterior distribution of the
accuracy (Section II). Based on this idea, our contribution
is the following: we propose to replace the accuracy by
the balanced accuracy, and we show how to estimate its
posterior probability distribution under parametric assump-
tions (Section III). We illustrate the utility of our approach
(Section IV) and briefly discuss our findings (Section V).

II. THE POSTERIOR ACCURACY

In a binary classification setting, let n be the number of
examples underlying a leave-m-out cross-validation scheme
with k folds. We assume k|m, which implies that each fold
contains n−m training instances and m test cases.

A common way of computing an estimate of generaliz-
ability begins by summing the number of correctly labelled
test cases, C, across all cross-validation folds, C =

∑k
i=1 ri,

where ri ∈ {0, . . . ,m}. The average accuracy can then be
reported as the fraction C

n . It is worth noting that, since
classification error = 1 − classification accuracy, the mean
error could be reported instead, and this equivalence pertains
to all other accuracy-related quantities discussed throughout
this paper. In any case, however, point estimates by them-
selves are not sufficient to assess statistical significance.

There are two types of hypothesis that we often wish to
test. First, is a classification algorithm operating at the level
of guessing, or is its generalization accuracy significantly
above chance? Second, more generally, does a classification
algorithm significantly outperform an alternative algorithm?
Both questions require statistical inference on a measure of
generalizability.

In order to determine, for instance, whether a given clas-
sification outcome is the result of an algorithm that operates
significantly above chance, one well-known possibility is to
regard each test case as an independent Bernoulli experiment
and compare C

n to the level that must be reached by an
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above-chance learning algorithm. The significance threshold
is F−1(1−α), where, for example, α=0.05, and where F−1

is the inverse cumulative density function of the Binomial
distribution with parameters n and p = 1

2 . While this
approach provides an estimate of significance, it does not
associate the accuracy with a measure of precision. As a
result, it does not readily support a principled way of directly
comparing two algorithms both of which have been found
to operate above chance.

One way of estimating the variance of the accuracy is to
consider the standard error of the mean, σ̂/

√
n, where σ̂ is

the empirical standard deviation of C
n , observed across all

cross-validation folds. However, this quantity is dependent
on arbitrary design choices such as m, the number of test
cases in each cross-validation fold, and, worse still, may
easily lead to error bars including values above 100%.

An alternative to the schemes described above is to
adopt a probabilistic view on generalizability [2, pp. 68–74].
Rather than averaging the outcomes obtained on different
cross-validation folds, we can use Bayesian statistics to
express our uncertainty about the underlying generalizabil-
ity [1]. Specifically, we can treat cross-validation results as
outcomes of a Binomial experiment and view each test case
as drawing with replacement from a bucket with an unknown
mixture of ‘correct’ and ‘incorrect’ balls. Given C and I
draws of such ‘correct’ and ‘incorrect’ balls, respectively,
and assuming a uniform (flat) prior on the interval [0, 1], the
posterior distribution of the fraction A of ‘correct’ balls is
given by the the conjugate prior of the Binomial distribution,
i.e., the Beta distribution

A ∼ Beta(a, b) (1)

with a = C + 1 and b = I + 1. Hence, when parameterized
in this way, it is the posterior probability density of the
probability x of classifying correctly unseen examples drawn
from the same source as the training data,

pA(x;C, I) =
1

B(C + 1, I + 1)
xC(1− x)I , (2)

where B(·) is the Beta function and C and I denote the
number of correct and incorrect predictions, respectively [2,
pp. 68–74]. Thus, the generalizability of a classification
algorithm can be described in terms of its posterior accuracy
distribution. For example, we could report:

the mean
C + 1

C + I + 2
(3)

the median F−1
B

(
1
2 ;C + 1, I + 1

)
(4)

the mode
C

C + I
(5)

a posterior
probability interval

[F−1
B

(
α
2 ;C+1, I+1

)
;

F−1
B

(
1−α2 ;C+1, I+1

)
]

(6)

where F−1
B is the inverse cumulative density function of

the Beta distribution. Note that the conventional average

accuracy discussed at the beginning can now be interpreted
as the mode of the posterior of the true accuracy under
the assumption of a flat Beta prior over accuracies (see
Section IV for an illustration). In the next section, we will
proceed to the main contribution of this paper, by showing
how a key limitation of the above approach can be overcome
by considering a different performance measure.

III. THE POSTERIOR BALANCED ACCURACY

Given a confusion matrix of classification results, the
accuracy can be a misleading performance measure. Specif-
ically, it may falsely suggest above-chance generalizability.
How may this situation arise?

It is a well-known phenomenon in binary classification
that a training set consisting of different numbers of rep-
resentatives from either class may result in a classifier that
is biased towards the more frequent class. When applied
to a test set that is imbalanced in the same direction, this
classifier may yield an optimistic accuracy estimate. In an
extreme case, the classifier might assign every single test
case to the large class, thereby achieving an accuracy equal
to the fraction of the more frequent labels in the test set.

Previous studies have examined different ways of address-
ing this problem, see [3], [4], [5]. One strategy, for example,
is to restore balance on the training set by undersampling
the large class or by oversampling the small class. Another
strategy is to modify the costs of misclassification in such a
way that no bias is acquired. However, while these methods
may under some circumstances prevent a classifier from
becoming biased, they do not provide generic safeguards
against reporting an optimistic accuracy estimate. This ob-
servation motivates the use of a different generalizability
measure: the balanced accuracy, which can be defined as
the average accuracy obtained on either class. Based on a
confusion matrix

actual
+ −

predicted+ TP FP
predicted− FN TN

the balanced accuracy (before we adopt a probabilistic view-
point) is given by 1

2

(
TP
P + TN

N

)
. If the classifier performs

equally well on either class, this term reduces to the con-
ventional accuracy (number of correct predictions divided
by number of predictions). In contrast, if the conventional
accuracy is high only because the classifier takes advantage
of an imbalanced test set, then the balanced accuracy, as
desired, will drop to chance.

Unlike the measure described in [6], the balanced ac-
curacy used here is symmetric about the type of class. If
desired, this symmetry assumption can be dropped, yielding
c× TP

P +(1−c)× TN
N , where c ∈ [0, 1] is the cost associated

with the misclassification of a positive example.
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Figure 1. Comparison of accuracy measures for two illustrative confusion matrices C1 and C2. The first example shows how the conventional average
accuracy (red) may imply a confidence interval that includes values above 100%. The second example shows how accuracies, unlike balanced accuracies
(green), falsely suggest above-chance generalizability in the case of a biased classifier that has taken advantage of an imbalanced test set.

In analogy with our discussion of accuracies in Section II,
a probabilistic view allows us to treat the balanced accuracy
as a random variable and reason about its posterior distri-
bution. Depending on whether the true label of a given test
case is positive or negative, let us regard a prediction as
a draw either (i) from a bucket of ‘true positive’ or ‘false
negative’ balls, or (ii) from a bucket of ‘true negative’ or
‘false positive’ balls. We are interested in the probability
density of 1

2 (AP +AN ), where AP and AN are random
variables specifying the accuracy on positive and negative
examples, respectively. This density can be derived from the
convolution of two Beta distributions,

pB(x; TP, FP, FN, TN) =∫ 1

0

pA (2(x− z);TP + 1, FN + 1)

· pA (2z;TN + 1, FP + 1) dz, (7)

where pA(x) is the density of the accuracy as defined in (2)
and pB(x) is the density of the balanced accuracy. Thus,
assuming a flat prior on the true balanced accuracy, we can
report cross-validation results by describing the posterior
distribution of the balanced accuracy. Note that the mean
(mode) of the distribution of the balanced accuracy does
not necessarily equal the mean of the means (modes) of
the separate accuracy distributions for positive and negative
examples. There are no analytical forms for the moments
considered in eqns. (3) through (6). However, we can com-
pute numerical approximations (see Section IV). A complete
set of MATLAB routines for this is available online.1

IV. ILLUSTRATIVE EXAMPLES

The utility of the balanced accuracy and its posterior
distribution could be illustrated using real-world data, but
the key properties can be demonstrated best on the basis of
a small set of hand-crafted examples.

As a result of training and testing two independent clas-
sifiers on different datasets, let C1 and C2 be the confusion

1 http://people.inf.ethz.ch/bkay/downloads

matrices of the respective results, summed across all cross-
validation folds. We wish to compare the average accuracy
(along with standard errors) to the posterior accuracy and
the posterior balanced accuracy (see Figure 1).

In the first example, the test set is perfectly balanced
(70 positive vs. 70 negative examples). As a result, the
differences between the three accuracy measures are not
substantial. However, the simulation does illustrate how 2
standard errors around the average accuracy yield an interval
that includes values above 100% (Figure 1, left box, red
interval). In contrast, the probability intervals of the posterior
accuracy and balanced accuracy show the desired asymmetry
(blue and green intervals).

In the second example, both the average accuracy and
the mean of the posterior accuracy seem to indicate strong
classification performance (Figure 1, right box, red and
blue intervals). The balanced accuracy, by contrast (green
interval), reveals that in this simulation the test set was
imbalanced (45 positive vs. 10 negative examples) and,
in addition, the classifier had acquired a bias towards the
large class (48 positive vs. 7 negative predictions). Accuracy
measures on their own fail to detect this situation and give
the false impression of above-chance generalizability.

The difference between accuracies and balanced accura-
cies is further illustrated in Figure 2. Based on the confusion
matrix C2, the two plots show all of the statistics mentioned
in Sections II and III superimposed on the central 95%
probability interval of the respective posterior distributions.
The figure also contains the ‘average balanced accuracy’ as
originally defined in the context of (7), computed as the
mean of the modes of the accuracies on positive and negative
examples. The simulation shows how a biased classifier
applied to an imbalanced test set leads to a hugely optimistic
estimate of generalizability when measured in terms of the
accuracy rather than the balanced accuracy.

V. DISCUSSION

In binary classification, confusion matrices form the basis
of a multitude of informative measures of generalizability.
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(a)  Posterior accuracy

based on C2

(b)  Posterior balanced accuracy

based on C2

mean
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Figure 2. Comparison between the posterior distribution of the accuracy and the balanced accuracy, based on the confusion matrix C2 depicted in Fig. 1.

Yet, it is still common to average accuracies across cross-
validation folds. This approach neither supports meaningful
confidence intervals; nor does it provide safeguards against
a biased classifier that has taken advantage of an imbalanced
test set. The first limitation can be overcome by the well-
known approach of considering the full posterior distribution
of the accuracy instead of a point estimate [2, pp. 68–74];
and the second one by the idea of replacing conventional
accuracies by balanced accuracies.

Throughout this paper, we have made no distinction
between individual classifiers on the one hand and classifi-
cation algorithms on the other, since the idea of considering
the posterior distribution of the balanced accuracy can be
applied to either. The only way in which the two cases differ
is whether we look at the confusion matrix that results from a
single train/test cycle (yielding the posterior of the balanced
accuracy of an individual classifier) or whether we sum the
confusion matrices across all cross-validation folds (leading
to the posterior of the algorithm as a whole). In most prac-
tical applications, it is the generalizability of the algorithm
that will be of primary interest. The approach can therefore
be used for any number of underlying cross-validation folds:
it solely requires the overall confusion matrix, as obtained
by summing individual confusion matrices across all folds.

The notions of the posterior distribution of both the
accuracy and the balanced accuracy can be generalized in a
natural way to a multiclass setting. Specifically, the posterior
of the relative fractions of class frequencies in the test data
can be estimated by replacing the Beta distribution by the
Dirichlet distribution.

Another important generalization will be the notion of
balancing not only class labels themselves but also other
variables that correlate with class labels. This is important,
for instance, in the case of a test set with balanced class
labels in which another binary variable, closely correlated
with class labels, is imbalanced. A biased classifier could
then falsely suggest high generalizability while, in fact, it
has learnt to separate examples according to the additional

variable rather than according to the original class labels.
The relationship between posterior probability intervals

and other measures, e.g., based on the binomial tail inversion
or a ROC analysis [7], will be investigated in future studies.
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