
Optimized Expected Information Gain
for Nonlinear Dynamical Systems

Alberto Giovanni Busetto1,2,3 busettoa@inf.ethz.ch
Cheng Soon Ong1 chengsoon.ong@inf.ethz.ch
Joachim M. Buhmann1,2 jbuhmann@inf.ethz.ch
1Department of Computer Science, ETH Zurich, Universitätstr. 6, 8092 Zurich, Switzerland
2Competence Center for Systems Physiology and Metabolic Diseases, Schafmattst. 18, 8093 Zurich, Switzerland
3Life Science Zurich PhD Program on Systems Biology of Complex Diseases

Abstract

This paper addresses the problem of active
model selection for nonlinear dynamical sys-
tems. We propose a novel learning approach
that selects the most informative subset of
time-dependent variables for the purpose
of Bayesian model inference. The model
selection criterion maximizes the expected
Kullback-Leibler divergence between the
prior and the posterior probabilities over the
models. The proposed strategy generalizes
the standard D-optimal design, which is
obtained from a uniform prior with Gaussian
noise. In addition, our approach allows us to
determine an information halting criterion
for model identification. We illustrate the
benefits of our approach by differentiating
between 18 published biochemical models
of the TOR signaling pathway, a model
selection problem in systems biology. By
generating pivotal selection experiments,
our strategy outperforms the standard A-
optimal, D-optimal and E-optimal sequential
design techniques.

1. Introduction
Dynamical systems theory develops the mathemati-
cal approach to model and analyze complex dynamical
systems, usually by employing differential or difference
equations. From the origins in Newtonian mechan-
ics, dynamical systems have broadened their range
of applications to diverse fields such as physics, bi-
ology, chemistry, engineering and finance. Contempo-
rary state-space representations enable analysis, simu-
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lation, prediction and control of dynamical processes.

When foundational assumptions exist, models can be
based on first principles. In realistic cases, such mod-
els are overly complex and uncertain. Because of in-
complete knowledge, conflicting theories exist and cor-
respond to a set of alternative models. These models
represent mutually exclusive hypotheses, whose degree
of belief changes as evidence accumulates. In accor-
dance with the scientific method, evidence is collected
through observations of phenomena that occur in the
natural world, or which are created as controlled ex-
periments in a laboratory. In this context, the con-
cept of surprise is fundamental in order to evaluate
the expected informativeness of an experiment (Baldi
& Itti, 2005). Obtaining valuable data is economi-
cally demanding and experimentally challenging and,
as a consequence, quantitative measurements are usu-
ally noisy, scarce and incomplete. Therefore, design-
ing experiments that are both feasible and maximally
informative is highly desirable. The advantages of ac-
tive rational design impact all the mentioned applica-
tion fields but are essential for systems biology, where
simple and well understood mechanisms are the excep-
tion (Kitano, 2002).

This paper describes the problem, summarizes the re-
lated work and presents our contributions in section 1.
Section 2 introduces the fundamental concepts, for-
malizes the methods and substantiate their theoreti-
cal justification. Section 3 shows the experimental re-
sults with a real set of alternative biochemical models,
demonstrating the empirical effectiveness of our ap-
proach and the obtained improvements with respect
to standard techniques. The conclusion discusses the
results and offers some directions for future research.

1.1. Problem Description
Given a set of models, the problem is to find the maxi-
mally informative state-subspace under given feasibil-
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Figure 1. Schematic illustration of the relationship be-
tween experiment, model inference and design.

ity constraints. The models are defined as rules for
the time evolution of a dynamical process on a state-
space. The constraints are bounds on the dimension
of the measurable subspace and on the number of se-
quential observations. In our scenario, the available
models are nonlinear and can be either deterministic
or stochastic. Their definition is possibly incomplete
and most probably uncertain: they encode the current
knowledge about the putative dynamic interaction be-
tween the variables of the system before the measure-
ment. The task of model selection must be performed
given time-series from partial and noisy experimental
measurements.

In this paper, two complementary goals are considered.
The first is to find the maximally informative subset
of state variables for the purpose of model selection.
The second is to identify their minimal number for
model identification. Moreover, we want to take as
much advantage as possible from prior information and
domain knowledge. As often in active learning, we
expect a potential feedback coupling between design
and experimentation. This is schematically illustrated
in Fig. 1.

1.2. Motivation
A motivation for our work is the recent considerable
interest in the design of biological experiments (Banga
& Balsa-Canto, 2008). Conflicting hypotheses and
scarce data severely hamper the development of pre-
dictive mechanistic models. Standard techniques are
not suited to complex dynamical systems: novel tech-
niques must incorporate prior information and take
into account nonlinear effects. In general, two main
challenges arise for the development of such a design.
First, the measurements are time-dependent and, as a
consequence, simultaneous measurements have a lim-
ited multiplicity. Second, even local nonlinearities can
propagate their effects at a global scale. As a result,
a successful approach must be flexible enough to con-
sider sufficiently complex behaviors, but it should also
be able to exploit the available regularities.

From a machine learning point of view, the interesting
aspects are the reduced observability in the high di-

mensional state-space and the relation between infor-
mation content and robustness of a dynamical system.

1.3. Related Work
In general, the design of experiments for the selection
of mathematical models defines an important part of
scientific research, i.e., how can we specify the control-
lable aspects of the system under consideration before
we execute the measurements. This paper entertains
the basic idea that model inference can be improved
by appropriately selecting the values of the control
variables. Since the pioneering work of Sir Ronald A.
Fisher, there has been a long research tradition on the
mathematical design of maximally informative exper-
iments. A significant number of articles and surveys
have been devoted to an exposition of the mathemat-
ical apparatus of optimal experimental design (Mont-
gomery, 2004). In general, the problem can be formu-
lated as an optimization problem for an utility function
that reflects the purpose of the experiment. Standard
non-Bayesian strategies include the alphabetical de-
sign methods and, between these, the most common is
the D-optimal design (Boyd & Vandenberghe, 2004).
A unifying theory for the formulation of Bayesian ex-
perimental design exists and is based on Shannon in-
formation criteria (Chaloner & Verdinelli, 1995). The
application of these approaches is recognized as gen-
eral and advantageous, but is usually severely lim-
ited to the linear-Gaussian case. The major short-
comings of the current methods, such as the lack of
integration of prior knowledge and the insufficient ex-
ploration of available unmeasured data, are well docu-
mented (Chaloner & Verdinelli, 1995). Entropy-based
nonlinear design approaches have been proposed be-
fore (van den Berg et al., 2003), but suffer important
limitations. First, they consider static systems instead
of dynamical ones. Second, by maximizing the entropy
instead of the relative entropy between prior and pos-
terior, they are unable to incorporate prior informa-
tion. This prevents their consistent iterative applica-
tion. Finally, they design maximally informative ex-
periments for parameter estimation within the same
model structure, instead of actively performing model
selection.

In the contemporary literature, attention for experi-
mental design is growing rapidly in the field of dynam-
ical systems, but nonlinear dynamical systems still re-
main a fairly unexplored field (Heine et al., 2008). This
is a significant research bottleneck, since nonlinear ef-
fects are often what differentiate alternative models in
systems biology. Since linearizations are not appro-
priate for most of the applications, new strategies are
urgently required.
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1.4. Contributions
The limitations mentioned above motivate us to pro-
pose a novel approach. Our main contributions are as
follows.

1. We introduce a novel optimal experimental design
technique for the purpose of model selection of
nonlinear dynamical systems. The key idea is to
maximize the expected information gain by select-
ing the most appropriate measurement subspace.
We provide a sequential strategy for the associ-
ated optimization problem, showing that it out-
performs theoretically and empirically standard
methods.

2. We propose a scheme to identify the minimal
number of variables required for model identifi-
cation. We provide insights into the suggested
method: it seeks for subspaces of the state-space
which produce informative dynamics. By com-
bining the halting criterion with the design tech-
nique, we open the way for a better understanding
of the key mechanisms that distinguish alternative
dynamical behaviors.

In short, whereas other approaches are either nonlin-
ear but static or dynamical but linear, our novel design
can be applied to nonlinear dynamical systems. More-
over, being based on the maximization of the relative
entropy instead of the entropy alone, it consistently in-
corporates prior information and enables iterative on-
line design.

2. Methods
This section introduces the basic definitions and math-
ematically formalizes our methods. We start with a de-
scription of the model selection scenario for dynamical
systems. This exposition is followed by the charac-
terization of the expected information gain and by its
optimization. Finally, we propose a halting criterion
that finds the minimum number of variables that pro-
vide a given fraction of the experimentally accessible
information.

2.1. Process and Measurement Models
A dynamical system Σ is described by two main com-
ponents: the process model and the measurement
model. The canonical approach in systems theory de-
scribes the process model M as a set of n first order
coupled differential or difference equations. It is an
implicit rule for the time evolution of the state x in
a state-space S. The trajectory can be determinis-
tic or stochastic and, in the case of continuous-time
continuous-valued systems, it is mathematically rep-
resented as an Ordinary Differential Equation (ODE)
or as a Stochastic Differential Equation (SDE), respec-
tively. In a time span T = [t0, tf ], the Itō SDE for a
process model is defined as

dx(t) = f(x(t), θ, u(t), t)dt + σw(x(t))dW (t), (1)

where x ∈ Rn is the n−dimensional state vector and
θ ∈ Rr is the parameter vector. The function u(·)
denotes the input intervention. The map f(·) is a
nonlinear function of the current state, the possibly
uncertain parameters θ and the input. It governs the
deterministic component of the r.h.s. in Eq. 1 and
its structure can be completely or partially known.
When the stochastic component exists, it is given by
the n−dimensional Wiener process W (t), whose in-
finitesimal variance is σ2

w. Given the initial conditions
x0 = x(t0), the process model is mathematically de-
fined as an initial value problem.

The measurement model is continuous-valued and
discrete-time. It is formalized as

y(ti) = h(x(ti), vi), (2)

where the function h(·) maps states into observations
y of dimension m ≤ n. The experimental observa-
tions are corrupted by noise, which is modeled by the
random variables vi. The function h is usually a lin-
ear function of the states and of the noise. It can be
written as

h(x, v) = Hx + v. (3)
Commonly, H can be defined as a m×n matrix, whose
elements are hij ∈ {0, 1}. When m distinct states
can be measured, it is possible to define a Variable
Selection Vector (VSV) s ∈ {0, 1}n such that

‖s‖1 =
n∑

i=1

si = m (4)

and hij(s) 6= 0 when sj = 1 and i =
∑j

k=1 sj . The
VSV indicates which elements of the state vector can
be directly observed by the measurement model.

The data set collected from an experiment whose VSV
is s is defined as

D(s) = {(ti, y(ti; s))}li=1, (5)

where {ti}li=1 are the measurement time points.

2.2. Model Selection
Scientific inquiry determines the principles behind a
series of observations as one of its fundamental tasks.
Since the observer lacks complete knowledge about f
in the process modelM, a set of alternative models is
hypothesized {fi}qi=1. They represent conflicting ex-
planations and, therefore, are mutually exclusive hy-
potheses.

In the Bayesian approach to model selection, the ob-
server makes inferences by computing the posterior
probability of a modelM given the available data set
D. The posterior probability is given by Bayes theo-
rem as

p(M|D) = p(D|M)p(M)/p(D), (6)
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where p(D|M) is the likelihood function, p(M) is the
prior and p(D) is the normalizing constant. The like-
lihood function must take into account the fact that
there exists an additional level of uncertainty, which
originates from the fact that the parameters are un-
known. Therefore, the likelihood function must be
computed as

p(D|M) =
∫

p(θ|M)p(D|M, θ)dθ. (7)

The dynamical behavior ofM is affected by the initial
conditions and possibly by stochastic effects. Conse-
quently, between consecutive measurements, the joint
probability of state and parameters is given by the so-
lution of the Fokker-Planck equation

∂p/∂t = −divfp + ∆Dp, (8)

where p = p(x|M, θ; t). We indicated the divergence
operator over the continuously differentiable vector
field fp as

divfp =
n∑

i=1

∂

∂xi
[f ]ip (9)

and the Laplacian operator over Dp as

∆Dp =
n∑

i=1

n∑
j=1

∂2

∂xi∂xj
[D]i,jp. (10)

Here, divfp(x, θ; t) is the drift term, which is the effect
obtained by the deterministic part of Eq. 1. The diffu-
sion term ∆Dp(x, θ; t), with the tensor D, represents
the random effects introduced by the stochastic force
in Eq. 1.

Based on all the available information, the goal of
Bayesian model inference for dynamical systems is the
reconstruction of the model posterior. Let us denote
the data set at time tk as

Dk = {(ti, y(ti)) ∈ D|i ≤ k}. (11)

The Bayesian inference must be performed by inte-
grating over the all the states and all the uncertain
parameters. The probability of being in a specific state
is determined by the solution of Eq. 8 and, therefore,
the posterior over the models is given by

p(M; t) =
∫ ∫

p(M, x, θ; t)dxdθ

=
∫ ∫

p(M|x, θ; t)p(x, θ; t)dxdθ

=
∫ ∫

p(M|x, θ; t)p(x|θ; t)p(θ; t)dxdθ.

(12)

When a new observation is performed at time tk, extra
information is available and the observer updates the
current belief state about the models by recursively
computing

p(x|θ,Dk; t) =
p(yk|x, θ; t)p(x|θ,Dk−1; t)

p(yk|θ,Dk−1; t)
(13)

and integrating in Eq. 12. The received information
reduces the uncertainty in the model posterior. In gen-
eral, the solutions of Eq. 13 cannot be computed ana-
lytically and must be approximated, usually employing
Monte Carlo (MC) techniques like particle filters.

2.3. Data Collection and Information
Shannon entropy, a key notion in information theory,
measures the uncertainty of a random variable. In our
scenario, it measures the uncertainty about the models
at certain points in time. This quantity is defined as

H[M; t] = −
q∑

i=1

p(Mi; t) log p(Mi; t). (14)

The mutual information between the models and the
data is denoted by

I(M,D) =
q∑

i=1

∫
p(M,D) log

(
p(M,D)

p(M)p(D)

)
dD

(15)
and represents the reduction in the uncertainty about
the models as a consequence of the experimental ob-
servations. It is important to note that the mutual
information is always non-negative. Therefore, from
the combination of Eq. 14 and Eq. 15, we have that

H[M; t0]−H[M; tk] = I(M,Dk) ≥ 0. (16)

2.4. Optimized Information Gain
The specification of the purpose of the experiment
produces various criteria for the choice of the design.
In our scenario, the goal is to maximally reduce the
uncertainty for the selection of the model, given all
the available knowledge. Following a decision theo-
retic approach, a general utility function is denoted
by U(d,M, s,D), where d is a decision coming from a
given set. For any design specified by the VSV s, the
expected utility of the best decision is given by∫

max
d

{
q∑

i=1

U(d,Mi, s,D)p(Mi|D, s)p(D|s)

}
dD.

(17)
The Bayesian solution to the experimental design
problem is provided by the design VSV s∗ maximiz-
ing Eq. 17. Simultaneously, it is possible to combine
the result with maximally informative initial condi-
tions and input perturbations (Busetto & Buhmann,
2009).

By using Eq. 15, we can state our design problem as
follows: find the VSV s∗ such that

s∗ = arg max
s∈{0,1}n

{I(M,D(s))} , (18)

subject to Eq. 4. The score function can be rewritten
as

I(M,D(s)) = ED [KL(p(M|D(s))||p(M))] , (19)
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where KL(·||·) is the Kullback-Leibler (KL) diver-
gence, which is a non-commutative measure of the dif-
ference between two probability distributions. It is
mathematically described as

KL(p(M|D)||p(M)) =
q∑

i=1

p(M|D) log
p(M|D)
p(M)

.

(20)
In our case, it measures the expected difference in
the number of bits required to code samples from
the posterior p(M|D(s)) when using a code based on
p(M|D(s)) itself, and when using a code based on
the prior p(M). Eq. 19 provides an insight into the
suggested optimization: we want to maximize the ex-
pected information difference between the prior and
the posterior over the models.

The standard D-optimal experimental design can be
obtained as a special case of the described approach,
when the prior over the models is a discrete uniform
distribution and the measurement noise is assumed to
be Gaussian with v ∼ N (0, σ2

vIm). This is shown by
the following equivalences:

s∗ =arg max
s
{ED [KL(p(M|D)||p(M))]}

=arg max
s

{∫
D

p(D)
∑
M

p(M|D) log
p(M|D)
p(M)

}

=arg max
s

{
−

∫
D

∑
M

p(D,M) log p(D)

}
=arg max

s
{H[D]}

=arg min
s
{det (cov[E ])} ,

(21)
where H[D] is the differential entropy of the data, that
is

H[D] = −
∫

p(D) log p(D), (22)

and E is the covariance matrix of the error e = x̂ − x
obtained by the maximum likelihood estimation of the
state. In line 3 of Eq. 21, the term H(D|M) is omitted
because it does not depend on the VSV due to the zero
mean and constant variance for all the state variables.
As a result, the experiment minimizes the volume of
the resulting confidence ellipsoid. A substantial differ-
ence from the usual static problems is that multiple
simultaneous measurements can be infeasible for dy-
namical systems, due to temporal constraints. This
distinguishes our scenario from the cases where it is
possible to directly approximate the solution with the
well-known relaxed experimental design problem.

Although Eq. 18 has a simple interpretation, the in-
volved optimization is a difficult Boolean nonlinear
problem. Since the number of possible VSVs grows
binomially along with the dimensionality of the state

space, finding the best measurable subset by exhaus-
tive search is usually intractable. Therefore, we have
to resort to feasible approximations. We formulate
the optimal experimental design as a sequential opti-
mization problem and we propose a greedy approach.
Given a VSV sk such that ‖sk‖ = k < m, the goal of
the sequential problem is the augmentation of sk with
an additional measurable element of the state, such
that

s∗k+1 = arg max
sk+1
{I(M,D(sk+1))} , (23)

subject to ‖sk+1‖1 = k + 1. (24)
This constraint maximization problem is solved by
looking for the maximally discriminative state between
the n−k variables that remain unmeasured. Together
with the simulated Bayesian inference, the evaluation
of the score function requires the numerical integra-
tion of the trajectory of the dynamical system and, in
the general case, requires the solution of Eq. 8. This
can be done with sequential MC techniques, which
achieve satisfactory approximations even for nonlin-
ear systems (Busetto & Buhmann, 2009). Here, we
propose an algorithm that iteratively augments the
VSV, until the measurement output reaches the di-
mension m. After the solution of Eq. 8 for every

Algorithm 1 (Sequential Information Gain)

Input: p(x0|θ,M), p(θ|M), p(M), tf , m
Output: s̃∗

for i=1 to q do
solve Eq. 8 for Mi;

end for
s0 ← 0n×1

for i=1 to m do
Select si with the highest I(M,D(si)) by aug-
menting si−1;

end for
s̃∗ ← sm;

model, I(M,D(s)) is evaluated by integrating over

I(M,D) =
∫

p(D)
∑
M

p(M|D) log
p(M|D)
p(M)

dD. (25)

This integral is simplified by using the following equiv-
alent form∑

M
p(M)

∫
p(D|M) log

p(D|M)
p(D)

dD, (26)

which is more amenable to MC computation, since it
requires only the evaluation of the likelihood function
and of the normalizing constant

p(D) =
∑
M

p(D|M)p(M). (27)

This optimized result s̃∗ approaches the global opti-
mum s∗ when the following assumption holds ∀sa, sb
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I(M,D(sa ∨ sb)) ' I(M,D(sa)) + I(M,D(sb)), (28)
where ∨ is the pointwise OR operator between the
two VSVs. The condition holds when there exists a
small subset of very informative variables which are
approximately independent. As shown in the results,
the assumption is justified for several biological sys-
tems. In fact, it is common to find a combination of
mechanisms which evolved towards functional modu-
larity and robustness.

2.5. Information Halting Criterion
Based on the presented design technique, we propose
a halting criterion to identify the dimensionality m of
the measurement vector that is sufficient to reach a
certain percentage of the total experimentally acces-
sible information. On the average, in the ideal case
where m = n, the amount of information gained after
the execution of an experiment can be easily computed
by using smax = 1n×1 on Eq. 26. Let us denote the ex-
pected information obtained with smax as Imax. Now,
for a given α ∈ [0, 1], we can formulate the halting
problem as follows: find m∗ such that

m∗ = min{m ≤ n|I(M,D(sm∗)) ≥ αImax}, (29)
where sm∗ is the solution of Eq. 18. The vector of di-
mension n which satisfies the required constraints can
be computed by stopping the sequential optimization
problem defined by Eq. 23 when the required informa-
tion threshold is met.

This approach can be particularly useful in cases
where, almost regardless of the initial conditions, a
small subset of the state variables provides a signif-
icant fraction of Imax. The effect has been observed
in a variety of systems, including electrical circuits,
fluid dynamics and biological systems. Information
concentration is due to the fact that, while some sub-
units are sensitive to small changes of initial condi-
tions and parameters, other functional components of
the system are robust to structural perturbation. The
observed persistence of some state variables between
models can be caused by decoupling between compo-
nents, by incorporated redundancy in the structure or
by self-stabilizing mechanisms (Wagner, 2005).

3. Results
In this section, a series of experiments are carried out
to evaluate the effectiveness of the proposed meth-
ods. We test our strategies with a real set of models
for the highly conserved Target-Of-Rapamycin (TOR)
pathway of Saccharomyces cerevisiæ. The dynamical
models represent mechanistically alternative hypothe-
ses that have been proposed in the literature. We
show that our design technique outperforms the stan-
dard A-optimal, D-optimal and E-optimal sequential
approaches. Moreover, we illustrate the ability of the

Figure 2. Representation of the molecular interactions of
the core modelM0 according to the standardized process
diagram graphical notation (Kitano et al., 2005). Proteins,
protein complexes and small molecules are shown as nodes,
while transitions are represented by arrows. Dashed lines
indicate enzymatic activity.

information halting criterion to identify minimal piv-
otal experiments that discriminate between alternative
hypotheses.

3.1. TOR Pathway Models
The TOR pathway of Saccharomyces cerevisiæ is an
important biological mechanism, whose mammalian
homologues are attractive drug targets. In fact, they
are believed to have a role in various diseases such
as cancer, autoimmunity, metabolic and cardiovascu-
lar disorders. The pathway constituents and many of
the molecular interactions are known, but the over-
all functionality is not well understood in a quanti-
tative sense. As a result of this uncertainty, a num-
ber of conflicting hypotheses regarding the biochemical
mechanisms that control TOR signaling have been pro-
posed (Kuepfer et al., 2007). A core model M0 sum-
marizes the present available knowledge on the path-
way. By incorporating new sets of chemical reactions
in M0, a library {Mi}18i=1 of alternative extensions
has been proposed. Each of these extended models
encode a different topology of the underlying reaction
network. The molecular interactions of the core model
are illustrated by Fig. 2.

The dynamical behavior of the TOR pathway is mod-
eled as a set of ODEs, where the state vector c(t) de-
scribes the concentrations of every distinct chemical
entity in the system. The change of the species con-
centration over time is formalized as follows

dc(t)/dt = N · r(c(t), θ, t) = f(c(t), θ). (30)
The stoichiometric matrix N describes the structural
relationships between the network components and
quantifies the net effect of all the involved reactions in
the biochemical system. It is invariant against time,
kinetics and concentrations. The vector r(c(t), θ, t)
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Figure 3. Average information gain as a function of the
dimension of the measurement vector. Obtained from 100
design problems with 18 pathway models and randomized
initial conditions. On the average, our method provides
33% more information than the standard methods for the
same dimension of the measurement vector.

represents the flux distribution in the network and is a
nonlinear function of the current concentrations and of
several kinetic parameters. Alternative models incor-
porate additional control mechanisms, which are en-
coded in the different functions fi. The total number
of chemical species is n = 60 and there are 127 distinct
chemical reactions in the model library, 24 of which be-
long to the common core. Each of the 18 extensions
incorporates a distinct set of additional reactions and
their complexity ranges from single reversible reactions
to convoluted nonlinear feedbacks composed of 16 ad-
ditional elements. Prior information about the mod-
els, their structure and parametrization comes from
the integration of eleven published experimental data
sets (Kuepfer et al., 2007).

3.2. Expected Information Gain
We test our algorithm against standard techniques:
the A-optimal, D-optimal and E-optimal sequential
designs. Respectively, they minimize the trace, the
determinant and the 2-norm of the error covariance
matrix E . Their geometrical interpretations are: the
minimization of the mean of the squared norm of the
error and, for the resulting confidence ellipsoid, the
minimization of its volume and of its diameter (Boyd
& Vandenberghe, 2004).

The expected information gain is plotted in Fig. 3 as
a function of m, which is the dimension of the mea-
surement vector. The results are quantified in terms
of expected Shannon information between the prior
and the posterior probability over the models, as a
result of the execution of the designed experiment.
In this test case, we use all the 18 published mod-
els (Kuepfer et al., 2007) and we average the results
obtained from 100 normalized design problems with

initial concentrations sampled from the uniform dis-
tribution in [0, 103]n [AU]. The prior probabilities are
generated at random, sampling uniformly from the pa-
rameter space of the multinomial distributions of di-
mension q. The measurement noise has covariance ma-
trix σ2

vIm = 3 · 105. The measurement time points are
t1 = 2.5 · 10−3 [AU] and t2 = 5.0 · 10−3 [AU]. The
numerical integration is performed by sequential im-
portance sampling/resampling with preventive parti-
cle clustering (Busetto & Buhmann, 2009). The plot
compares our strategy with the A-optimal, D-optimal
and E-optimal sequential designs. For every m, our
approach is more informative and, on the average, is
able to provide approximately 33% more information
than the standard methods. Figure 3 shows that our
strategy rapidly identifies the most informative vari-
ables. Whereas standard approaches require the mea-
surement of 4 state variables to gain 1 bit, our method
yields more information with only 3 variables.

The advantage over the sequential alphabetical designs
comes from the better use of the available prior in-
formation. As theoretically shown by Eq. 21, the D-
optimal design assume a uniform prior and select the
VSVs according to a distorted score function. More
precisely, it substitutes the expected KL divergence
between the prior and the posterior with the entropy
of the posterior. This loss of information, which cor-
responds to the KL divergence between a flat prior
and the “real prior” p(M), reflects its sub-optimality
in the sequential selection of s. The same considera-
tions extend to the A-optimal and E-optimal designs:
they exhibit a similar performance for these dynamical
systems because E approximates a scalar matrix.

3.3. Halting Criterion
We test the proposed information halting criterion
with the 18 models of the TOR pathway. An up-
per bound on the amount of information that the ex-
periment can provide is given by Imax, obtained when
the entire state vector is observable. Figure 4 shows
that 9 state variables provide 80% of the experimen-
tally accessible information. The information halting
criterion offers theoretical and practical advantages.
First, it provides an insight about the behavior of
the studied system: the few informative mechanisms
are rapidly identified. Second, combining the crite-
rion with a cost function, it defines a tradeoff between
the value of the expected information gain and the ex-
pense for resources. Interestingly, our study confirms
the results of computational and experimental stud-
ies (Kuepfer et al., 2007): the complex Tap42p-Tip41p
plays a strongly discriminative role under a wide range
of initial conditions and parameters.
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Figure 4. The information halting criterion shows that the
measurement of 9 variables provides 80% of the experimen-
tally accessible information. Key mechanisms emerge from
the intersection of the subsets obtained under different ini-
tial conditions. The upper bound is given by Imax.

4. Conclusion
We presented a novel approach to active model selec-
tion for nonlinear biochemical systems. The generality
of the method permits its application to both stochas-
tic and deterministic dynamical systems, whose initial
conditions and parameters are uncertain. Our strat-
egy overcomes some of the limitations of the current
methods: they are restricted to either nonlinear but
static or dynamical but linear systems and often do
not directly incorporate prior information. Under the
information theoretic framework, we proposed a halt-
ing criterion for the obtainment of a required amount
of experimentally accessible information.

From a machine learning point of view, we introduced
a new method for active learning in the context of
nonlinear dynamical model selection. From the math-
ematical perspective, we showed that our approach is
more general than the common D-optimal experimen-
tal design. The empirical results show that the method
significantly outperforms the competing A-optimal, D-
optimal and E-optimal sequential designs.

The advantages of the presented approach can be sum-
marized as follows. First, it obtains a higher infor-
mation gain for a given number of measurements, as
shown in Fig. 3. Second, it enables the identification of
a highly informative subset of measurements, as shown
in Fig. 4. The obtained empirical results suggest its
wide applicability to real-world problems. In particu-
lar, we expect that its ability to generate decisive ex-
periments will prove particularly useful for structurally
uncertain systems. The wide range of applications in-
clude systems biology, sensor placement, electronic cir-
cuit design, tracking in computer vision and planning
of clinical trials. More generally, the relationship be-
tween dynamical robustness and learnability is a topic
that deserves attention and is the subject of ongoing

research.
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