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Abstract

RadioTalk is a communication platform that enabled members of the Radio Galaxy Zoo (RGZ) citizen science project to engage in dis-
cussion threads and provide further descriptions of the radio subjects they were observing in the form of tags and comments. It contains
a wealth of auxiliary information which is useful for the morphology identification of complex and extended radio sources. In this paper,
we present this new dataset, and for the first time in radio astronomy, we combine text and images to automatically classify radio galaxies
using a multi-modal learning approach. We found incorporating text features improved classification performance which demonstrates that
text annotations are rare but valuable sources of information for classifying astronomical sources, and suggests the importance of exploit-
ing multi-modal information in future citizen science projects. We also discovered over 10000 new radio sources beyond the RGZ-DR1
catalogue in this dataset.
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1. Introduction morphologies and the variation in appearance due to different
observational constraints. Radio galaxies are challenging objects:
The extents of their complex structures are not necessarily bound
to the stellar components of their host galaxies and can range from
parsecs to megaparsecs in scale. Due to this difficulty, radio galaxy
morphologies are traditionally identified through visual examina-
tion by expert astronomers (e.g. for the G4Jy Sample; White et al.
2020a,b). Automated radio source classifiers based on machine
learning methods have risen in prominence in recent years thanks
to the increase in data and computing power availability (e.g.
Polsterer, Gieseke, & Igel 2015; Aniyan & Thorat 2017; Alger et al.
2018; Wu et al. 2019). Note that the morphology identification
problem is also often called ‘classification’ of the galaxies. We avoid
this phrasing throughout this paper to avoid confusion with the
machine learning concept of classification.

Radio Galaxy Zoo (RGZ) is an online citizen science project
that asked volunteers to (1) associate disconnected radio source
components, and (2) match these to their host galaxies (Banfield
et al. 2015; O. I. Wong et al. in preparation). The RGZ website
would show volunteers coordinate-matched radio and infrared
(IR) images of extended radio sources. See Appendix A for an illus-
tration of the online interface presented to volunteers (Banfield
et al. 2015). RGZ Data Release 1 (henceforth DR1; O. I. Wong
et al. in preparation) catalogues the associations and host galaxies
for 98559 sources from the Faint Images of the Radio Sky survey
(FIRST; White et al. 1997). In addition to these core tasks of asso-
ciating and matching, citizen scientists were also able to tag and
comment on the radio sources they were labelling.

Both citizen scientists and the professional science team dis-
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Widefield radio astronomy surveys using the Square Kilometre
Array (SKA) pathfinder instruments (e.g. Hotan et al. 2021;
Hurley-Walker et al. 2017; Jarvis et al. 2016) are heralding an era
of transformational change in methods for data processing and
analysis thanks to the vast data rates and volumes resulting from
these new facilities. For example, the Australian Square Kilometre
Array Pathfinder (ASKAP; Hotan et al. 2021) has already mapped
approximately 2.1 million radio sources in the observatory-led
Rapid ASKAP Continuum Survey (RACS; Hale et al. 2021), and
the upcoming Evolutionary Map of the Universe (EMU) survey is
expected to map approximately 40 million (Norris et al. 2021b).
How to analyse such a significant number of radio sources has
now become an active area of study in itself. For example, the SKA
project has issued source-finding data challenges as a part of their
science preparatory activities (Bonaldi & Braun 2018; Bonaldi
et al. 2021). Other problems include the aggregation of discontin-
ued emission components, and classification of radio galaxies into
physically meaningful classes (Alger 2021, Section 2.4.2).

Radio galaxies come in various shapes with various different
physical properties. A well known example of radio galaxy mor-
phology types is Fanaroff-Riley Type I and II galaxies (Fanaroff &
Riley 1974), whereby Type I represents jets which are brighter
in the core regions and Type II represents jets that are brighter
toward the ends (called ‘hot spots’).

Identifying radio galaxy morphologies en masse is very diffi-
cult. This is because of both the large diversity of radio galaxy

© The Author(s), 2023. Published by Cambridge University Press on behalf of the Astronomical Society of Australia. This is an Open Access article, distributed under the terms of
the Creative Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and
reproduction in any medium, provided the same Creative Commons licence is used to distribute the re-used or adapted article and the original article is properly cited. The written
permission of Cambridge University Press must be obtained prior to any commercial use.

https://doi.org/10.1017/pasa.2023.50 Published online by Cambridge University Press


https://doi.org/10.1017/pasa.2023.50
https://orcid.org/0000-0001-6063-2622
https://orcid.org/0000-0001-5110-8845
https://orcid.org/0000-0003-4264-3509
https://orcid.org/0000-0002-2302-9733
mailto:ivy.wong@csiro.au
https://doi.org/10.1017/pasa.2023.50
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/pasa.2023.50&domain=pdf
https://doi.org/10.1017/pasa.2023.50

found that the RadioTalk forum and the further comparisons to
other ancillary observations were necessary to identify and classify
these very large sources (Banfield et al. 2015, 2016).

The RGZ Data Release 1 (RGZ-DR1) catalogue and its prede-
cessors are derived from the core labelling task (O. I. Wong et al.
in preparation), and has been used in the development of a vari-
ety of machine learning radio source classifiers (Lukic et al. 2018;
Alger et al. 2018; Wu et al. 2019; Galvin et al. 2019; Ralph et al.
2019; Tang et al. 2022; Slijepcevic et al. 2023). Building upon these
investigations, we present in this paper a radio source classifier that
is jointly trained on both images from RGZ-DR1 and text from the
RadioTalk forum.

The RadioTalk forum allowed volunteers to optionally con-
tribute further observations for specific radio subjects by assigning
tags, writing comments and interacting via various discussion
boards. RadioTalk, therefore, contains a wealth of auxiliary infor-
mation currently not present in the RGZ catalogue. Since there
has been no previous analysis of the forum or tag data, this
posed a unique opportunity for our work to utilise techniques in
machine learning to extract new insights, improve future infor-
mation retrieval and maximise the science output from the RGZ
project. Furthermore, the use of the text data from the RadioTalk
forum is likely to benefit the ~30% of the initial input sources for
which the resulting classifications were too uncertain for inclusion
into the RGZ-DRI catalogue.

Tags have also been discussed in recent studies as the way for-
ward for future citizen science projects that are aimed at classifying
radio galaxy morphologies (Rudnick 2021). From an annotated
sample of radio sources, Bowles et al. (2022) and (2023) explored
the derivation of semantic classes as a multi-modal problem for the
purpose of providing more accurate descriptions of radio source
morphologies. Within the field of astronomy, natural language
processing (NLP) models have also been used to explore the text
from astronomy publications. For example, Ciucd & Ting (2023)
investigated the potential of pre-trained large language models for
comparing and summarising astronomical studies, or proposing
new research ideas.

For the first time in radio astronomy, we combine images and
text to automatically identify radio galaxy morphologies. Such an
approach builds upon the merits of using tags and text (Rudnick
2021; Bowles et al. 2022, 2023), while retaining the advantage of
the spatial information from the image datasets. Specifically, our
work focuses on the tagging functionality of the forum used by the
volunteers to assign concise descriptions to the subjects they were
observing. These tags are particularly valuable for extended radio
sources which are of high interest to radio astronomers. A suitable
classification scheme for extended radio sources is still debated
amongst astronomers as quantitative classification schemes alone
are insufficient in capturing the diverse set of jet morphologies.
Subjects that share similar tags may enable better categorisation of
sources that share physical phenomena.

In this paper, we introduce the RadioTalk dataset. This is a
dataset of over 10000 manually labelled images of complex radio
objects, as well as text features that represent these objects. This
dataset is useful for both astronomers who are interested in radio
objects, and machine learning researchers who are interested in
real combined image/text datasets on which to demonstrate novel
machine learning methods. We use this dataset to demonstrate the
utility of a combination of text and image features for automated
classification of complex radio objects. We train a combined image
and text model to predict ‘hashtags’ for complex radio sources,
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with our workflow presented in Fig. 1. We show that machine
learning on forum text provides a useful approach for galaxy
classification, and complements image based approaches.

Section 2 describes the datasets used in this paper, while
Section 3 describes the machine learning workflow. We present
our results and discussion in Sections 4 and 5, respectively.
Section 6 concludes with a summary of our work.

2. Radio galaxy zoo datasets

The RGZ-DRI1 catalogue connects associated radio components
to their originating host galaxies for subject classifications with a
minimum of 0.65 (user-weighted consensus level), which has a sta-
tistical reliability of at least 75% (O. . Wong et al. in preparation).
While this catalogue is not central to the topic of this paper, it was
useful as an independent avenue for validating the image and text
data that is described in this section.

2.1. RGZradio and infrared images

Coordinate-matched radio and infrared images are crucial for the
core task of radio source classification due to the expected physi-
cal spatial symmetry of synchrotron emission from radio sources
and their host galaxies, even if the radio source morphologies and
extents are loosely constrained, and dependent on instrumental
sensitivity, resolution and other imaging systematics. The infrared
images traces the stellar population of the host galaxies from which
the radio emission could originate. As the radio emission can
be spatially offset from its originating host galaxy, visual inspec-
tion from citizen scientists help increase the efficiency of such
classification tasks.

RGZ matches radio images from the Faint Images of the Radio
Sky at Twenty Centimeters (FIRST; White et al. 1997) and the
Australia Telescope Large Area Survey Data Release 3 (ATLAS;
Franzen et al. 2015) surveys to infrared images from the Wide-
Field Infrared Survey Explorer (WISE; Wright et al. 2010) and
the Spitzer Wide-Area Infrared Extragalactic Survey (SWIRE;
Lonsdale et al. 2003) surveys, respectively. As shown in Fig. 1,
the WISE 3.4 um (W1) infrared image is presented as a heatmap
that is overlaid with contours of the radio emission. These radio
contours begin at the 40 level with increments of factors of +/3.
We note that within the RGZ project’s interface (as illustrated in
Appendix A), these radio contours can be faded into a blue-scaled
image but for the purpose of this paper, we use the single heatmap
IR images that has radio contours overlaid.

In this paper, we use the 10643 radio and heatmap images from
the pre-release DR1 catalogue that was also used by Wu et al.
(2019), and extract features of both the radio contours that are
overlaid on the infrared heatmap images with pre-trained vision
transformer (Dosovitskiy et al. 2020). In particular, the features of
a radio image is a 768-dimensional embedding, and similarly for
the corresponding heatmap images. These embeddings, together
with those of the corresponding text discussions, are the inputs of
a feedforward neural network (i.e. MLP) to classify the tags.

2.2. Threaded text discussions from RadioTalk

At the conclusion of the core RGZ cross-matching task, the partic-
ipants are asked if they would like to ‘discuss’ the subject further
and tag the subject in question with hashtags. In addition, the
RadioTalk forum also includes longer-form general science dis-
cussions that are less subject-specific but could be associated with
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Figure 1. Overview of the machine learning workflow for classifying radio sources in this paper. We apply the same pre-trained Vision Transformer (Dosovitskiy et al. 2020), denoted as ViT* in the workflow, to both the radio and
infrared (IR) images to produce their numerical presentations, and the pre-trained BERT language model (Devlin et al. 2019) is used to create a numerical representation of the corresponding text discussions on RadioTalk forum after
removing the tags. These representations are combined before passing it to a multi-label classifier which predicts tags likely applicable to the radio source. The classification performance is obtained by comparing the ground-truth
tags in the RadioTalk forum text and the tags predicted by the classifier. The screenshot in this figure shows images and discussions text for subject ARGO02XAP.
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a set of subjects. The screenshot in Fig. 1 shows an example of
both the shorter discussion comments (left panel) and the longer
discussions (right panel) that relate to the subject ARG002XAP.

Due to the free-form nature of such discussions in addition to
the tagging of subjects being an optional task, the associations of
discussions to subjects and the tagging of subjects are likely to be
highly incomplete. Nevertheless, we found comments and tags for
an additional 10810 RGZ subjects that are not included in RGZ-
DR1. This suggests that participants tended to discuss subjects
with complex radio morphologies that do not attain the consen-
sus level cut required by RGZ-DR1. We refer the reader to Fig. 5
for more details and Section 4.1 for a further discussion.

The consistency of the hashtags is further complicated by the
fact that each participant could freely generate new hashtags as
the use of suggested hashtags is not enforced. This results in cases
where subjects could have been tagged with a relevant hashtag that
has been suggested, but in reality remains untagged. This scenario
contributes towards a positive-unlabelled dataset which has impli-
cations for the application of machine learning techniques. The 20
most frequently used tags in the RadioTalk dataset can be found in
Fig. 2.

2.3. Radio subject hashtags for supervised learning

To prepare the dataset for our machine learning classifiers we
performed two main pre-processing steps.

Firstly, we concatenated all thread text associated with a given
subject. Secondly, we cleaned the tags to increase coherence across
the forum. The dataset contains over 1000 unique raw tags,
largely containing synonymous or misspelt terms. To maximise
the amount of information we can extract from the dataset we
generated a mapping function from the raw tags to their pro-
cessed counterpart. Our mapping function converted the raw tags
to lower-case and removed special characters. To handle misspelt
and abbreviated tags, we used a Levenshtein distance heuristic
alongside manual revisions. The Levenshtein distance between
two tags is the minimum number of edits (i.e. insert, delete or
replace a single character) required to change one tag into the
other (Navarro 2001). It is widely used to measure the difference
between two text sequences, in particular for short text like the
tags in our dataset. As an explicit example, our generated mapping
function maps the raw tags ‘Doublelobe’, ‘double-lobe‘ and ‘doub-
blelobe’ to the single tag ‘doublelobe’. This method of processing
preserves semantic content while improving tag coherence across
subjects and reducing the set of distinct tags.

After applying these steps we were left with several hundreds
of tags, from which we selected the 50 most frequent tags as we
found these made up 94% of all tag usage in the dataset (see
Fig. 2). Upon closer examination by an astronomer (OIW), we
found many tags could be describing similar morphologies, and
a hierarchical tree of tag clustering (see Fig. 3) was created. Hence
we created a smaller set of tags by merging tags with shared mean-
ing into a single tag. We note that the hierarchical tree used in
this paper is to group similar source structures observed from the
FIRST images, for the purpose of developing an automated classi-
fier, rather than the representation of child and parent nodes. The
merged classes may not fully represent our astrophysical under-
standing of the source classes. For example, headtail sources may
in fact be NATs but because the tails may not be distinguishable
from the FIRST image, hence the headtail class is a more accurate
description of the image.
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Figure 2. Summary of tag usage in the RadioTalk dataset. Top: Histogram of the 20
most frequently used tags. Bottom: Proportion of the total tag usage covered by the
top n tags (i.e. the n most frequently used tags). We can see that the top 50 tags cover
94% of all tag usage in the RadioTalk dataset.

We created a new set of 11 tags by merging a few tags with the
same meaning. The merging is performed according to the hier-
archical tree of tag clustering shown in Fig. 3. Table 1 shows the
4 sets of tags that are merged to create 4 new tags. In particular,
if a radio subject is labelled by two or more (old) tags which will
be merged into a new tag, we update the set of tags for the subject
by adding the new tag and removing the old tags. For example, if
a radio subject is labelled both ed and hybrid by participants of
the RadioTalk forum, according to Table 1, we would then remove
both ed and hybrid from its tags, and add asymmetric to its tags.
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Table 1. Merging 4 sets of tags to create 4 new tags.

Table 2. Statistics of tags and text discussions of radio subjects.

Tags (before merging) Tag (after merging) Mean Std Dev Min 25% 50% 75% Max
onesided, corejet, headtail, hymor, hybrid, asymmetric asymmetric #Unique tags 1.61 1.21 0 1 1 2 14
NOIR, IFRS noir_ifrs #Comments 1.44 1.02 1 1 1 2 53
double, doublelobe double Word count 10.96 11.99 1 4 8 14 424
bent, nat, wat bent
artefact Artefact Asymmetric Bent ~ Compact Double Hourglass NOIR_IFRS Overedge Restarted  Triple  XShaped
NOIR
{ IFRS 1x1
compact
————double 1x1
hourglass
one-sided 768x1
headtail
hymor
hybrid
triple 768x1
bent
nat 1536x 1
wat

{ restarted
X-shaped

Figure 3. Hierarchical tree of tag clustering created by an astronomer upon closer
examination of the most frequently used tags in the RadioTalk dataset. The merger
of tags in Section 2.3 are performed according to this tree.

We argue that it is beneficial or even necessary to merge tags
given the current data volume and quality, and our work bene-
fits from having larger sample sizes per tag that results from the
merger of tags. The merging scheme presented in Table 1 are for
technical reasons of sample sizes. It would have been nice to not
have merged those tags for astrophysical reasons, or adopt alter-
natively approaches (Bowles et al. 2022, 2023) should sufficient
samples be available.

The set of 11 tags after merge are: artefact, asymmetric,
bent, compact, double, hourglass, noir_ifrs, overedge,
restarted, triple, xshaped. The noir_ifrs tag is an abbre-
viated tag that represents the ‘No Infrared/NoIR’ and the ‘Infrared
Faint Radio Source’ classes of radio sources whose host galaxies are
not visible in the corresponding infrared or optical maps (Norris
et al. 2006). Descriptions of the other tags as well as examples of
radio subjects for each of the 11 tags can be found in Appendix B.

2.4. Summary of the galaxy tagging dataset

We shall now present an analysis of our constructed RadioTalk
dataset to better understand the available data. In total, the citizen
scientists used 702139 words within 53065 threaded comments to
discuss 34015 radio subjects in the RadioTalk forum. Table 2 shows
the statistics of tags and comments across the threaded text discus-
sions of radio subjects. From this, we can deduce that the threads
are very short with less than 2 comments per subject on average. In
fact, most subjects contain only a single tag and a single comment.
Such sparsity in data poses further challenge to a tag prediction
system since we have little data to learn from.

After the pre-processing steps described in Section 2.3, we
found 10643 subjects in the RadioTalk dataset with both radio and
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Figure 4. Architecture of the multi-modal classifier. As an example, this figure shows
the predicted probabilities of the 11 tags for the radio subject ARGO002FUD, making
use of its discussion text on the RadioTalk forum (after pre-processing as discussed in
Section 3.1), and its radio and infrared images.

infrared images (with radio contours) available in the RGZ-DR1
catalogue. To create data splits for training and testing, we first
sort these subjects by their unique Zooniverse ID which also sorts
them chronologically. We then use the first 85% of rows as the
training data with the remainder to be used as the test set. The
same splitting approach is used to create a training set and a vali-
dation set from the training data. This results in 7688 (72%), 1357
(13%) and 1598 (15%) radio subjects in the training set, validation
set and test set, respectively, in the dataset. The training set is used
to learn the classification models (see Section 3), the validation set
is for tuning the hyper-parameters of classifiers (for example, the
architecture details shown in Fig. 4), and the test set is reserved
for evaluating the trained classifiers so that the reported classifica-
tion performance is a good indication of how well the models will
perform on new radio subjects.

We created a dataset archive which is available to download
from Zenodo at https://zenodo.org/record/7988868. For each of
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Table 3. Metadata of the dataset archive on Zenodo.

Total subjects 10643
Subjects for training 7688
Subjects for validation 1357
Subjects for test 1598
Text embedding size 768
Radio image embedding size 768
Infrared image (with radio contours) embedding size 768

the training, validation and test set, we provide a CSV file where
each row represent a radio subject with a particular zooniverse ID
(zid). The columns in the CSV files are the three feature vectors
corresponding to the embeddings of the radio image, the infrared
image with radio contours, and the discussion text, respectively,
for every radio subject. In particular, the embeddings of radio
images (columns radio001 to radio768) and infrared images
with radio contours (columns ir001 to ir768) are produced by
a pre-trained ViT model (Dosovitskiy et al. 2020). The embed-
dings of the discussion text for radio subjects (columns text001
to text768) are generated by a pre-trained BERT model (Devlin
etal. 2019). Sections 3.1 and 3.2 provide further details of how text
and image features are extracted. The last 11 columns in the CSV
files are binary indicators of tags for each radio subject. The size of
the dataset archive is 114 MB, and its metadata is summarised in
Table 3.

3. Classifiers

Building models capable of processing information from multiple
modalities is essential for many applications within and outside
astronomy (Ngiam et al. 2011; Baltrugaitis, Ahuja, & Morency
2018; Cuoco et al. 2021; Hong et al. 2023), and in this work, we
frame the task of predicting tags for radio subjects as a multi-
label classification problem by employing a multi-modal machine
learning approach to incorporate information from both text and
image data in the RadioTalk dataset.

To extract text and image features we utilise state-of-the-art
pre-trained transformer models. Transformers are a deep learning
architecture that have demonstrated success for natural language
processing and computer vision tasks, however require significant
amounts of data to train (Lin et al. 2021b). Given our dataset is
relatively small in the current era of deep learning we can lever-
age transfer learning by using pre-trained vision and language
transformer models as feature extractors.

We consider three sources of information for identifying the
hashtag corresponding to each object: (1) radio image, (2) infrared
image along with its contour lines, and (3) free-form text from
the RadioTalk discussion. Each of these input data is converted to
a numerical representation (called embedding) using deep learn-
ing. The image data is embedded using a pre-trained Vision
Transformer (ViT; Dosovitskiy et al. 2020), and the text dis-
cussion is embedded using a pre-trained language model called
Bidirectional Encoder Representations from Transformers (BERT;
Devlin et al. 2019).

3.1. Text features

The task for our multi-label classifier is to predict tags associated
with a given radio subject using the volunteer text comments. To
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extract a feature representation from the comments, we performed
three main steps.

Firstly, we concatenated the comments for each radio sub-
ject, converted the text to lowercase, and removed all hashtags in
the concatenated text. Secondly, we utilised the spaCy (Honnibal
et al. 2020) library to perform text cleaning which included stop-
word removal and token lemmatisation. A stopword is a word that
occurs frequently but contributes little meaning, examples include
‘the’, ‘is’, and ‘for’. Lemmatisation is a process to reduce words
to their root form, for example, the lemmatised form of ‘ejected’
is ‘eject’. Both are common pre-processing techniques to remove
noise in text.

We remark that while our pre-processing of the free-form
text were similar to that implemented by Bowles et al. (2023),
our model does not predict for FR morphology classes from the
tags. One difference between the text archive from (Bowles et al.
2023) and our work is that our RGZ volunteers have not been
asked to describe the source morphologies in plain English within
the RadioTalk forum, but rather to nominate source hashtags.
Consequently, the RadioTalk forum contains fewer multi-tag and
long text threads than that described in Bowles et al. (2023). The
sparsity of our text data is also a driving reason for pursuing a
multi-modal learning approach.

Lastly, we perform feature extraction using a state-of-the-
art pre-trained BERT model which has demonstrated success
across a broad range of NLP tasks (Devlin et al. 2019). There
are many variants of the BERT transformer model, we used the
BERT-base-uncased® model consisting of 12 transformer blocks
(Vaswani et al. 2017) and 110M parameters. This pre-trained
BERT model is powerful enough to handle long input context and
is suitable for comments in the RadioTalk forum while being effi-
cient in computation compared to much larger NLP models such
as those adopted by Ciucd & Ting (2023). The model has a hid-
den size of 768, and thus a 768-dimensional embedding can be
extracted for each token in the input text. However, we are inter-
ested in obtaining a single embedding for all text associated with
each radio subject. BERT conveniently prepends a special [CLS]
token to all input text, and the embedding of which is designed to
use for classification tasks. The maximum number of input tokens
(i.e. word pieces) for a text sequence specified by BERT is 512, and
there are less than 0.7% of radio subjects in our dataset are associ-
ated with text sequences longer than this limit. For simplicity, we
truncated these long sequences before extracting the text features
using BERT.

In this manner, we can extract a single 768-dimensional
embedding for each radio subject in our dataset from the volunteer
comments.

3.2. Image features

Features of radio images and infrared images (with radio con-
tours) were extracted by a pre-trained state-of-the-art ViT model.
ViT has recently been employed in galaxy morphological classi-
fication (Lin et al. 2021a) as well as detecting and segmenting
objects in radio astronomical images (Sortino et al. 2023). It can
learn positional embedding of image patches and is relatively effi-
cient to train compared to classical convolutional neural networks
(Dosovitskiy et al. 2020).

*https://huggingface.co/bert-base-uncased.


https://huggingface.co/bert-base-uncased
https://doi.org/10.1017/pasa.2023.50

Publications of the Astronomical Society of Australia

In this work, we used the ViT-B/16® architecture pre-trained
on the ImageNet dataset (Deng et al. 2009). The radio images were
first processed by a power stretch of 2 (i.e. squared stretch), and
resized to 224 x 224 through linear interpolation of pixels. They
were then fed to the pre-trained ViT model which split an input
image into a sequence of patches of size 16 x 16, and the sequence
of (flattened) patches were treated the same as tokens in a text
sequence in BERT Dosovitskiy et al. 2020).

Similar to the embedding of the special [CLS] token in BERT,
which serves as the sentence representation, ViT learns a embed-
ding vector that serves as the representation of the sequence of
image patches, in other words, a representation of the input image.
The features of infrared images with radio contours were extracted
using the same approach, except that the pre-processing step only
resizes the infrared images without performing any stretching. As
a result, we extract one 768-dimensional embedding for the radio
image of a subject, and one 768-dimensional embedding for the
infrared image of the same subject. These image features can then
serve as the input of a multi-label classifier to predict tags for a
radio subject.

3.3. Predicting hashtag probabilities

Let x&)xt, xg)dio, xf? be the RadioTalk forum discussion text, the
radio image, and the infrared image (with radio contours) of
the i-th radio subject in the dataset, respectively. We can cre-
ate a numerical representation of the i-th radio subject using its
text features as presented in Section 3.1 and/or its image features
(Section 3.2). In particular, a representation of the i-th radio sub-
ject ' considered in this paper can incorporate text, image or

multi-modal (i.e. text and image) information.

BERT (Xfi)xt> , text

oV =1f (ViT (xgdio) , ViT (xf;))) ,
g (BERT (XEQH) , ViT (Xi)dio) , ViT (Xf?)) ,  multi-modal
1)

foralli=1,..., N where N is the number of radio subjects in the
dataset. BERT( - ) denotes features of the input text extracted by
a pre-trained BERT model, and ViT( - ) represents features of the
input image extracted by a pre-trained vision transformer model.
Functions f and g are feedforward neural networks (with learnable
parameters) that combine multiple input embeddings into a single
768-dimensional embedding.

We then compute the probability P; that the j-th tag is associ-
ated with the i-th radio subject in the dataset.

image

Pi=o (w]T¢<i>), forallj=1,...,11. @)

where o (z) = (1 + exp (—z)) ! is the sigmoid function, and w; is
a 768-dimensional vector of weights which are learned by training
the classifier.

A multi-label classifier compares P;; with a threshold probabil-
ity P, (we used P, = 0.5) and predicts the j-th tag is associated with
the i-th radio subject if P;; > P,, otherwise it would suggests the
j-th tag is not relevant to that radio subject.

®https://download.pytorch.org/models/vit_b_16-c867db91.pth.
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3.4. Multi-label classification methods

There are many approaches to multi-label classification, but they
can be broadly separated into two categories: problem transfor-
mation and algorithm adaptation (Tsoumakas & Katakis 2007).
Problem transformation methods approach the task by transform-
ing the multi-label dataset into one or more single-label datasets.
From here generic machine learning approaches can be employed
to train a classification model per label. On the other hand, algo-
rithm adaptation approaches make fundamental changes to the
training and prediction mechanism to directly handle multiple
labels simultaneously (Bogatinovski et al. 2022). In our work we
employ two problem transformation approaches, binary relevance
and classifier chains (Read et al. 2009; Dembczynski, Cheng, &
Hillermeier 2010).

Binary relevance is a simple approach to multi-label classifi-
cation, which involves training a binary classifier for each label.
Multi-label classifiers based on Equation (2) are binary relevance
classifiers. In this paper, we refer to the multi-label classifier based
solely on the text features as the text classifier, and the one that uses
features of the radio and infrared images but not the text features
as the image classifier. The multi-label classifier that makes use of
multi-modal information (i.e. text and image features) is denoted
as the multi-modal classifier.

Figure 4 illustrates the architecture of the multi-modal classifier
used in this work. Given the RadioTalk forum text, the radio and
infrared images of a radio subject, the multi-modal classifier first
combines the text features extracted by BERT and features of both
the radio and infrared images extracted by ViT, and then passes the
combined representation to an MLP to produce the probabilities
which indicate how likely each of the 11 tags will be labelled for
the radio subject.

A weakness of the binary relevance approach is that it can-
not capture dependencies between labels. To extend it to handle
label dependencies we employed classifier chains. Each classifier,
except the first in the chain uses the input features and predic-
tions from the previous classifier to predict the target label. Again
any base binary classifier can be used however performance will
be sensitive to the ordering of labels in the chain. In this work,
we followed the recommendations by Read et al. (2009) and aver-
aged an ensemble of 10 randomly ordered chains when making
predictions.

3.5. Classification performance evaluation

To evaluate the performance of our classifiers we used stan-
dard metrics including Precision, Recall, F1-score and Balanced
Accuracy for each label. We can summarise the performance
across labels by taking the macro-average. We also used a few
ranking metrics specific to the task of multi-label classification,
including Label Ranking Average Precision (LRAP), Coverage
Error and Label Ranking Loss (Tsoumakas, Katakis, & Vlahavas
2009). More details of these performance metrics can be found in
Appendix C. We remark that multi-label classification is a signif-
icantly more difficult task than multi-class classification, since the
number of possible label sets grows quickly (specifically, it grows

by (Z) where 7 is the total number of classes, and k is the maxi-

mum number of allowed labels), a random classifier would return
an F1 score very close to zero.
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Figure 5. Over 10000 complex sources that are not in the RGZ-DR1 catalogue are
available in the RadioTalk dataset.

3.6. Multi-label prediction and open set classification

Radio galaxy classification is an important task in astronomy, and
we remark that, in machine learning context, the word ‘classifica-
tion” unfortunately has a very specific meaning which is usually
different from the meaning of classification in astronomy. In par-
ticular, multi-class classification typically assumes that all classes
are known, and that each data point has one and only one possible
class, while multi-label classification allows multiple classes (from
a known set of classes) for a data point. There are two desiderata
for classifying radio morphologies: (1) identification of new mor-
phologies, and (2) identifying multiple possible descriptions for a
particular radio subject. Therefore, if we want multiple hashtags
per radio subject (as indicated by the RadioTalk forum data), then
multi-label classification is needed since the set of tags (i.e. classes)
are known in our dataset. On the other hand, if one is interested in
identifying new morphologies, it is more appropriate to use open
set classification (Scheirer et al. 2013) which does not assume all
classes are known, and we leave this for future work.

4. Results

4.1. Over 10000 new sources beyond the DR1 catalogue

All subjects in the RGZ project were assigned unique identifiers
shared across the forum and the catalogue. The catalogue contains
the astronomical metadata and the volunteer generated annota-
tions associated with each radio source in a subject. We expected
the forum subjects to be a subset of the catalogue for which users
provided tags or comments. However, we found an interesting
result when we attempted to cross-reference subjects in the forum
with those in the catalogue using their common identifier. We dis-
covered 10810 unique subjects that were present in the forum but
not in the catalogue (see Fig. 5). Given each RGZ subject required
20 independent classifications, we recovered over 200000 volun-
teer classifications. This finding implied volunteers could interact
with these subjects, but their collective annotation results were not
reaching the catalogue.

After investigating these subjects manually, we found they were
extended, complex and noisy sources and thus would have been
difficult to classify. The RGZ pipeline uses the Kernel Density
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Estimator (KDE) method® to converge on the source classification
from the many volunteers’ classifications (Banfield et al. 2015).
For complex subjects, the classifications from the many volun-
teers may contradict one another. This can result in KDE failing to
converge, in addition to low classification consensus levels below
the threshold required for inclusion in RGZ DRI (O. I. Wong
etal. in preparation). Given the disagreement amongst volunteers,
these complex sources are likely to contain unique or interesting
qualities which are ripe for further analysis.

4.2. Text information complements image data

When text and image features individually result in good and
comparable accuracy, the multi-modal features give significantly
better performance (see Table 4). For example, the individual
text and image classifiers were performing relatively well in the
noir_ifrs and overedge classes. However, this performance is
further boosted in the multi-modal classifier when both sets of
information were used in combination.

This result suggests that the text conversations between the cit-
izen scientists and academic scientists are contributing additional
information to the radio morphologies that are not as evident in
the radio and IR heatmap images.

Specifically, there are two main avenues for additional infor-
mation that the text data have relative to the image data: (1)
participants are more likely to discuss and tag complex sources
which they find interesting or are confused by; and (2) all partic-
ipants in the RadioTalk forum are provided with additional tools
to zoom in and out of a subject, in addition to links to coordinate-
matched sky images from other multiwavelength surveys. Such
additional tools are useful for providing additional information
about a subject that otherwise would not be possible with the
heatmap images alone.

Hence, through the use of a multi-modal classifier, we are able
to take full advantage of all the information that is present within
RGZ. Such an approach contributes towards maximising the sci-
entific value that could be gained from the investment of effort
in conducting a citizen science project. Interestingly, when using
only text data, we found that classifier chains barely improve upon
the binary relevance classifier across the standard metrics used
to evaluate the performance for most tags (see Table 4), in addi-
tion to the macro-average metrics as well as ranking metrics such
as LRAP, with recall as an exception (see Tables D.1 and D.2 in
Appendix D).

4.3. Rare morphologies are harder to classify

As expected, classes with larger sample sizes results in better per-
formance on average (see Table 4 and Fig. 6). However, diverse or
more complex morphologies (such as ‘asymmetric’) result in lower
accuracy even when there is a large sample size within its class (as
shown in Fig. 6).

5. Limitations and implications

The limitations inherent in our current study comes from two
main sources: (1) limitations from data collection that is carried
forward from the RGZ project to our study here; (2) the methods

°KDE is a kernel-based method to estimate the probability density function. Within the
RGZ pipeline, KDE is applied to the volunteers’ clicks.
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Table 4. Classification performance (in terms of F1 score) of each tag, for text, image, and multi-modal information. Classes are sorted in increasing order of
the number of subjects tagged with the class. Text: Binary relevance classifier using only text features; Text (CC): Classifier chains using only text data; Image:
Classifier using only images; Text-+Image: Classifier using multi-modal information. The best performance for each tag is shown in bold italic .

xshaped restarted artefact noir_ifrs bent overedge asymmetric hourglass triple compact double
Text+Image 0.158 0.176 0.109 0.385 0.364 0.511 0.257 0.373 0.423 0.643 0.637
Image 0.118 0.178 0.104 0.325 0.347 0.455 0.256 0.377 0.403 0.648 0.641
Text 0.021 0.053 0.076 0.331 0.209 0.419 0.236 0.228 0.313 0.347 0.473
Text (CC) 0.011 0.039 0.027 0.242 0.150 0.231 0.208 0.209 0.273 0.380 0.510
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Figure 6. Classification performance (in terms of F1 score) versus the number of occurrences of tags in the dataset for the binary relevance classifiers using text (Text), images
(Image) and multi-modal information (Text-+Image). Text information can be helpful in predicting tags with few (e.g. xshaped), medium (e.g. noir_ifrs and overedge) or large

(e.g. triple) number of observations in the dataset.

that we use to investigate the relative efficacy of multi-modal
classification.

5.1. Limitations of the RGZ dataset

The RGZ project is based on the publicly-available observations
of the FIRST survey (White et al. 1997). In comparison to contem-
porary radio surveys such as the Rapid ASKAP Continuum Survey
(RACS; Hale et al. 2021), the FIRST survey is much less sensitive
to diffuse and extended emission. Therefore, the performance of
our image and multi-modal classifiers will also be limited by the
intrinsic imaging limitations that comes from the FIRST survey.

Annotations and tags from citizen science projects can be sub-
jected to a range of potential biases (e.g. Draws et al. 2021). For
example, the motivation for discovering new objects may lead
to potential biases in the classes of biases such as confirmation
and anchoring biases. However, our results in this paper (see
Section 4) suggest that our tag dataset is sufficiently accurate for
this study. As such our participants’ personal motivation for dis-
covery is unlikely to lead to tags that are strongly influenced by
confirmation or anchoring biases.

As mentioned previously, the task of tagging is optional within
the RGZ workflow which results in both data sparseness and class
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imbalance. To reduce the impact of such limitations, we merged
similar classes (see Table 1) to increase the number of samples for
the classes being studied.

The complexity of radio galaxy morphologies depends on the
observational limitations of the instruments that are used. Hence,
the relative importance of tagged morphologies may evolve in
time. For example, observations at higher resolution and sensi-
tivity of the same source that was previously classified may reveal
more detailed morphologies which could change the classification.
Therefore, it is possible that the tags that are derived from the RGZ
project may not be as useful for future next-generation surveys.

5.2. Limitations of our results

The tagging problem investigated in this work is formulated
as a multi-label classification problem, which assumes that all
classes (that is, tags) are known before tagging a radio subject.
However, the set of tags we used obviously cannot characterise
every radio subject in the universe, this implies that if new mor-
phologies are needed, for example, in another dataset, the pro-
posed approach will not accurately predict the tags. In this case,
a different approach such as open set classification is needed (see
the discussion in Section 3.6).
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Another limitation of our results comes from the dramatic dif-
ferences in the frequencies of tags (see Fig. 2), even after we merge
similar tags, as shown in Fig. 6. Such imbalanced class sizes may
result in less accurate classification performance.

The text and image features used in the multi-modal classi-
fier are extracted by pre-trained deep learning models that are
not specifically trained to classify tags for radio subjects. Using
model weights further optimised for our multi-label classification
problem (e.g. through fine-tuning those pre-trained deep models
on the RadioTalk dataset) or employing deep models specifically
designed for our problem may lead to more accurate classification
of tags.

5.3. Implications for future citizen science projects

Thanks to advances in radio telescope technologies, astronomers
will be able to survey tens of millions of radio sources (e.g. Norris
et al. 2021b) but without the ability to visually classify even a
few percent of such samples. Hence, citizen science projects such
as RGZ provide the potential for astronomers to obtain quanti-
fied visual classifications in a more efficient manner. Furthermore,
the accuracy and fidelity of such citizen science classifications
have been further demonstrated by the success of early machine
learning-based prototype classifiers which used pre-release ver-
sions of RGZ-DR1.

In this paper, we demonstrate the value of multi-modal
(text+image) classification. Using the overedge class as an exam-
ple, we show greater F1 scores than if we were to base our classifier
solely on the images or the text data alone (see Fig. 6). This indi-
cates that both text and image information add value in terms of
classification performance.

As the next-generation radio surveys get underway to reveal
new classes of radio sources with morphologies that were not seen
before (e.g. Norris et al. 2021a), the relative importance of tagged
morphologies will continue to evolve. Based on the premise that
new discoveries may not fit well into historically-derived cate-
gories of sources and paradigms, Rudnick (2021) argues for the
importance of tags for the classification of sources for future sur-
veys. Building on the arguments of Rudnick (2021), our results
provide quantitative and empirical support for the use of hash-
tags and text, in combination with images in future citizen science
projects for the classification of radio galaxies. Indeed, this is a
recent topic of active research and our study here can also be
compared to recent work by Bowles et al. (2023) that delve into
improving the current classification scheme through developing a
semantic taxonomy for radio morphology.

In the future, automated classifiers based on machine learn-
ing methods will continue to improve and reduce the fraction
of sources that require visual inspection. However, advances in
instrumentation will nevertheless probe new parameter spaces
thereby retaining the need for visual verification. Therefore, citi-
zen science projects (which gather both images and text conversa-
tions) will continue to be important for such at-scale exploration
of the Universe.

6. Summary and conclusions

As the next-generation SKA pathfinder surveys embark on large
sky surveys that produce tens of millions of radio galaxies, we do
not have sufficient scientists (including citizen scientists) to per-
form visual inspection and classification of such large samples.
Therefore, the development of machine learning-based automated
classifiers is crucial for increasing the discovery rate of rarer and
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more complex classes of sources by citizen scientists and the aca-
demic science team (e.g. Gupta et al. 2022). Participants in RGZ
were afforded the option to tag or label subjects with hashtags in
addition to contributing towards further discussion either on the
specific subject or on any broader science topic that is related to
the phenomena such as radio galaxy evolution.

This study investigated the use of machine learning on free-
form text discussion, to complement multiwavelength images
of radio galaxies, for the task of automating the identification
of galaxy morphologies. We explored the use of multi-modal
classification to determine whether the addition of hashtag labels
will result in improved accuracy with classifying rare radio galaxy
morphologies. In a one-to-one comparison, we found that the
image classifier outperforms the text classifier across most per-
formance metrics (see Table D.1 in Appendix D). The combined
text and image classifier results in improved performance over
the image classifier and text classifier alone. Such a result suggests
that future RGZ-like citizen science projects may benefit from
the increased use of hashtags in order to build more accurate
models of the different radio galaxy classes. Unsurprisingly, rare
morphologies are not well represented in the data. We used
a hierarchical tree (see Fig. 3) to merge the smaller classes to
improve the sample sizes for the rarer morphology classes. While
the reduction of classes does result in a small improvement in F1
scores, due to the small sample sizes of the various morphological
classes, we recommend caution in interpreting the performance
metrics for our classification methods.

We find that pre-trained language models (like BERT) and
vision transformer have significant potential for the task of classi-
fying complex radio source morphologies. In particular, we show
the potential of quantifying free-form text in astronomy, using
deep learning models that represent text as vectors of numerical
features. Text is becoming increasingly important in citizen sci-
ence (Rudnick 2021; Bowles et al. 2022, 2023), and our results
provide further evidence supporting the use of free-form dis-
cussions and hashtags, to complement image analysis for galaxy
classification. However, our results do suggest that future citizen
science projects should address the fact that rarer classes of objects
will result in fewer tags which could lead to class imbalance issues.
This proof-of-concept paper has demonstrated the use of data
driven approaches to improve our taxonomy of radio galaxies, as
well as the benefits of richer multi-modal sources of information
using machine learning-based methods.
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Appendix A. The RGZ interface

The RGZ online interface is shown in Fig. A.1.
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Figure A.1. RGZ interface for cross-matching radio components to host galaxies
(Banfield et al. 2015). Panel (a) shows an example double-lobed radio source and the
slider in the central position where both the radio and infrared images are presented
in blue and orange heatmaps, respectively. As the slider is transitioned completely
towards IR, the radio image reaches 100 percent transparency and the radio emis-
sion is represented by the sets of contours (panels b and c). The associated radio
components are highlighted as blue contours in panel (b) and the volunteer-identified
cross-matched host galaxy is marked by the yellow circle in panel (c).
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Appendix B. Examples of radio subjects

Figure B.1 shows examples of radio subjects for the 11 tags used in
this work.

artefact asymmetric bent compact double hourglass noir_ifrs overedge restarted triple xshaped

A b -] - Kd =~

Figure B.1. Examples of radio subjects for each of the 11 tags. From left to right: (1) artefact describes an image where there is significant image processing residuals; (2)
asymmetric describes radio jets or lobes that are not symmetrical; (3) bent describes jets and lobes that appear to have been swept to one side; (4) compact describes an
unresolved single component radio source; (5) double describes two radio components that extend away from the host galaxy; (6) hourglass describes two overlapping radio
components; (7) noir_ifrs describes a radio source with no visible galaxy counterpart; (8) overedge describes a source which extends beyond the field-of-view of the image;
(9) restarted describes a radio jet that consists of more than 3 components which could be due to restarting radio jet activity; (10) triple describes a source with 3 radio
components; (11) xshaped describes a source which appears to be a superposition of 2 orthogonal hourglass sources.
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Figure B.2. Precision-Recall curves of the multi-label classifier using multi-modal information for each of the 11 tags.
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Appendix C. Background on performance metrics for multi-
label classification

The classification performance is evaluated using Precision, Recall
and F1 score for each tag (i.e. label), as well as their macro-
averaged counterparts over all tags. In particular, let N be the
number of samples (i.e. radio subjects) in the dataset, M be the
number of tags, and TP;, FP;, TN; and FN; be the number of true
positives, false positives, true negatives and false negatives for the
j-th label, respectively. The Precision, Recall and F1 score for the
j-th label are defined as

g TP,
Precision; = m,
j j
TP;
Recallj = ———,
TP; + FN;
1
Fl. =

T 1y
2\ Precision; Recall;

and the macro-averaged definitions are

M
1
macro-Precision = I Z Precision;,
Jj=1
L M
macro-Recall = — Recall;,

1M
macro-F1 = — F1..
M ; !

Further, given that the dataset is imbalanced (as discussed in
Section 2), we also report the performance using the balanced
accuracy (Brodersen et al. 2010; Kelleher, Mac Namee, & D’Arcy
2015) averaged over all tags, i.e.

1 TP, TN;

Balanced Accuracy = M J:ZI (TPj TN, + N, + FPJ-> .

Lastly, we report the performance of the multi-label classifica-
tion using three ranking metrics: Label ranking average precision
(LRAP), coverage error and label ranking loss. Recall that the
multi-label classifier gave a probability for every tag for a given
radio subject (as detailed in Section 3.3). Let Y € {0, 1}¥*M be the
binary indicator matrix of true labels (that is, Y;; = 1 iff the i-th
radio subject was given the j-th tag), and rank; be the rank of the
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j-th tag given by the multi-label classifier (in terms of predicted
probabilities). The three ranking metrics are defined as

1 L1 m;;
LRAP=— %" — I,
N~ m; . rank;;
i=1 je{l,...M}
V=1
N
Coverage Error = — max_rankg,
N “ jell,....M}
i=1 v;=1
1 N qi
Label Ranking Loss = — S
g N Z m,(M — m,-)

i=1
where m; is the number of ground-truth tags of the i-th radio
subject, m;; is the number of ground-truth tags with higher prob-
abilities (as predicted by the multi-label classifier) than that of
the j-th tag, and g; is the number of tag pairs that are incorrectly
ordered by the multi-label classifier (i.e. a ground-truth tag is given
a lower probability than that of a false tag).

Appendix D. More detailed results

Tables D.1 and D.2 present additional results on the test set of the
four multi-label classifiers (i.e. binary relevance with text, image
and multi-modal information, and classifier chains with text data).
The evaluation metrics are introduced in Appendix C. We also
report the precision-recall curves (on the test set) in Fig. B.2 for
each of the 11 tags produced by the multi-label classifier using
multi-modal information.

Table D.1. Classification performance evaluated with additional metrics. Text:
Binary relevance classifier using only text features; Text (CC): Classifier chains
using only text data; Image: Classifier using only images; Text+Image: Classifier
using multi-modal information. The best performance in terms of each metric
(i.e. each row) is shown in bold italic.

Text Text (CC) Image Text+Image
Balanced accuracy 0.611 0.554 0.709 0.710
macro-Precision 0.182 0.124 0.257 0.273
macro-Recall 0.467 0.821 0.621 0.609
macro-F1 0.246 0.207 0.350 0.367
LRAP 0.496 0.476 0.689 0.693
Coverage error 4.003 4.248 2.730 2.679
Label ranking loss 0.256 0.278 0.130 0.127
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Table D.2. Classification performance for text, image, and multi-modal information. Text: Binary relevance classifier using only text features; Text (CC): Classifier
chains using only text data; Image: Classifier using only images; Text+Image: Classifier using multi-modal information. The best performance in terms of each
metric among 4 different multi-label classifiers is shown in bold italic .

Text Text (CC) Image Text+Image
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1
artefact 0.043 0.312 0.076 0.014 0.500 0.027 0.062 0.312 0.104 0.066 0.312 0.109
asymmetric 0.162 0.435 0.236 0.116 0.983 0.208 0.165 0.565 0.256 0.164 0.593 0.257
bent 0.133 0.484 0.209 0.081 0.944 0.150 0.241 0.619 0.347 0.263 0.587 0.364
compact 0.288 0.436 0.347 0.238 0.947 0.380 0.548 0.792 0.648 0.530 0.816 0.643
double 0.445 0.504 0.473 0.342 0.996 0.510 0.528 0.816 0.641 0.531 0.796 0.637
hourglass 0.140 0.609 0.228 0.118 0.916 0.209 0.252 0.749 0.377 0.254 0.704 0.373
noir_ifrs 0.213 0.752 0.331 0.140 0.892 0.242 0.201 0.847 0.325 0.251 0.822 0.385
overedge 0.318 0.616 0.419 0.132 0.942 0.231 0.345 0.668 0.455 0.416 0.663 0.511
restarted 0.029 0.333 0.053 0.020 0.500 0.039 0.111 0.444 0.178 0.120 0.333 0.176
triple 0.225 0.512 0.313 0.159 0.984 0.273 0.307 0.589 0.403 0.315 0.645 0.423
xshaped 0.011 0.143 0.021 0.006 0.429 0.011 0.068 0.429 0.118 0.097 0.429 0.158
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