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Abstract: A rather flexible approach to multi-task learning consists in solving a regulariza-
tion problem where a suitable kernel is used to model joint relationships between both inputs
and tasks. Since specifying an appropriate multi-task kernel in advance is not always possible,
estimating one from the data is often desirable. Herein, we overview a class of techniques for
learning a multi-task kernel that can be decomposed as the product of a kernel on the inputs
and one on the task indices. The kernel on the task indices (output kernel) is optimized si-
multaneously with the predictive function by solving a joint two-level regularization problem.
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1 Learning Multi-Task Kernels

Predictive performances of kernel-based regularization
methods are highly influenced by the choice of the ker-
nel function. Such influence is especially evident in the
case of multi-task learning where, in addition to speci-
fying input similarities, it is crucial to correctly model
inter-task relationships. Designing the kernel allows to
incorporate domain knowledge by properly constraining
the function class over which the solution is searched.
Unfortunately, in many problems the available knowl-
edge is not sufficient to uniquely determine a good ker-
nel in advance, making it highly desirable to have data-
driven automatic selection tools. This need has moti-
vated a fruitful research stream which has led to the
development of a variety of techniques for learning the
kernel.

For a broad class of multi-task (or multi-output) learn-
ing problems, a kernel can be used to specify the joint
relationships between inputs and tasks [1]. Gener-
ally, it is necessary to specify similarities of the form
K((x1,1),(x2,7)) for every pair of input data (z1,x2)
and every pair of task indices (i,7). However, a very
common way to simplify modeling is to utilize a multi-
plicative decomposition of the form

K((xlvi)v (‘r27])) = Kx(l'171'2)Ky(i,j),

where the input kernel Kx is decoupled from the output
kernel Ky. The same structure can be equivalently

represented in terms of a matrix-valued kernel
H(l’l,xg):Kx(fEl,(EQ)'L, (1)

where L is a symmetric and positive semidefinite matrix
with entries LU = Ky(l,j)

Even after imposing such simplified model, specifying
the inter-task similarities in advance may still be im-
practical. Indeed, it is often the case that multiple
learning tasks are known to be related, but no pre-
cise information about the structure or the intensity of
such relationships is available. Simply fixing L to the
identity is clearly suboptimal since it amounts to share
no information between the tasks. On the other hand,
wrongly specifying the entries may lead to a severe per-
formance degradation. It is therefore clear that, when-
ever the task relationships are subject to uncertainty,
learning them from the data is the only meaningful way
to proceed.

The most widely developed approach to automatic
kernel selection, known as Multiple Kernel Learning
(MKL), consists in learning a conic combination of ba-
sis kernels of the form

N
K= dem, dy, > 0.
k=1

Appealing properties of MKL methods include the abil-
ity to perform selection of a subset of kernels via spar-
sity, and tractability of the associated optimization



problem, typically (re)formulated as a convex program.
Apparently, the MKL approach can be also used to
learn a multi-task kernel of the form

N
K((x1,4), (x2,5)) = > dp KX (w1, 22) K- (i, ),
k=1

that includes the possibility of optimizing the matrix
L in (1) as a conic combination of basis matrices. In
principle, proper complexity control allows to combine
an arbitrarily large, even infinite [2], number of kernels.
However, computational and memory constraints force
the user to specify a relatively small dictionary of basis
kernels to be combined, which again calls for a certain
amount of domain knowledge.

2 Output Kernel Learning

A more direct approach to synthesize the output kernel
from the data consists in solving a two-level regulariza-
tion problem of the form
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where V is a suitable loss function, Hy, is the Repro-
ducing Kernel Hilbert Space of vector-valued functions
associated with the reproducing kernel (1), Q is a suit-
able matrix regularizer, and Sy is the cone of symmet-
ric and positive semidefinite matrices. We call such an
approach Output Kernel Learning (OKL).

A technique of this kind was introduced in [3] for the
case where V' is a square loss function, () is the squared
Frobenius norm, and the input data x;; are the same for
all the output components f;. Such special structure
of the objective functional allows to develop an effec-
tive block coordinate descent strategy where each step
involves the solution of a Sylvester linear matrix equa-
tion. Regularizing the output kernel with a squared
Frobenius norm leads to a simple and effective compu-
tational scheme. However, we may want to encourage
different types of relationship structures in the output
space. Along this line, [4] introduces low-rank OKL, a
method to discover relevant low dimensional subspaces
of the output space by learning a low-rank kernel ma-
trix. This is achieved by regularizing the output kernel
with a combination of the trace and a rank indicator
function, namely

QL) = tr(L) + I(rank(L) < p).

For p = m, the hard-rank constraint disappears and )
reduces to the trace norm which, as it is well known,
encourages low-rank solutions. Setting p < m gives up
convexity of the regularizer but, on the other hand, al-
lows to set a hard bound on the rank of the output
kernel, which can be useful for both computational and

interpretative reasons. Low-rank OKL enjoys interest-
ing properties and interpretations. Just as sparse MKL
with a square loss can be seen as a nonlinear general-
ization of (grouped) Lasso, low-rank OKL is a natural
kernel-based generalization of reduced-rank regression,
a popular multivariate technique in statistics.

For problems where the inputs x;; are the same for
all the tasks, optimization for low-rank OKL can be
performed by means of a rather effective procedure
that iteratively computes eigendecompositions. Impor-
tantly, the size of the involved matrices can be con-
trolled by selecting the parameter p. Unfortunately,
more general multi-task learning problems where each
task is sampled in correspondence with different inputs
require completely different methods. If a square loss
is adopted, it turns out that an effective strategy to ap-
proach these problems consists in iteratively apply inex-
act Preconditioned Conjugate Gradient (PCG) solvers
[5] to suitable linear operator equations that arise from
the optimality conditions.

3 Concluding remarks and future
directions

Learning output kernels via regularization is an effec-
tive way to solve multi-task learning problems where
the relationships between the tasks are highly uncer-
tain. The OKL framework that we have sketched in the
previous section is rather general and can be developed
in various directions. Effective optimization techniques
for more general (non-quadratic) loss functions are still
lacking and the use of a variety of matrix penalties for
the output kernel matrix is yet to be explored.
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