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Abstract

How should we design experiments to maximize performance of a complex
system, taking into account uncontrollable environmental conditions? How
should we select relevant documents (ads) to display, given information about the
user? These tasks can be formalized as contextual bandit problems, where at each
round, we receive context (about the experimental conditions, the query), and
have to choose an action (parameters, documents). The key challenge is to trade
off exploration by gathering data for estimating the mean payoff function over the
context-action space, and to exploit by choosing an action deemed optimal based
on the gathered data. We model the payoff function as a sample from a Gaussian
process defined over the joint context-action space, and develop CGP-UCB, an
intuitive upper-confidence style algorithm. We show that by mixing and matching
kernels for contexts and actions, CGP-UCB can handle a variety of practical ap-
plications. We further provide generic tools for deriving regret bounds when using
such composite kernel functions. Lastly, we evaluate our algorithm on two case
studies, in the context of automated vaccine design and sensor management. We
show that context-sensitive optimization outperforms no or naive use of context.

1 Introduction

Consider the problem of learning to optimize a complex system subject to varying environmental
conditions. Or learning to retrieve relevant documents (ads), given context about the user. Or learn
to solve a sequence of related optimization and search tasks, by taking into account experience with
tasks solved previously. All these problems can be phrased as a contextual bandit problem (c.f.,
[1, 2], we review related work in Section 7), where in each round, we receive context (about the
experimental conditions, the query, or the task), and have to choose an action (system parameters,
document to retrieve). We then receive noisy feedback about the obtained payoff. The key challenge
is to trade off exploration by gathering data for estimating the mean payoff function over the context-
action space, and to exploit by choosing an action deemed optimal based on the gathered data.

Without making any assumptions about the class of payoff functions under consideration, we
cannot expect to do well. A natural approach is to choose a regularizer, encoding assumptions
about smoothness of the payoff function. In this paper, we take a nonparametric approach, and
model the payoff function as a sample from a Gaussian process defined over the joint context-action
space (or having low norm in the associated RKHS). This approach allows us to estimate the
predictive uncertainty in the payoff function estimated from previous experiments, guiding the
tradeoff between exploration and exploitation. In the context-free case, this problem is studied
by [3], who analyze GP-UCB, an upper-confidence bound-based sampling algorithm that makes
use of the predictive uncertainty to trade exploration and exploitation. In this paper, we develop
CGP-UCB, a natural generalization of GP-UCB, which takes context information into account.
By constructing a composite kernel function for the regularizer from kernels defined over the action
and context spaces (e.g., a linear kernel on the actions, and Gaussian kernel on the contexts), we can
capture several natural contextual bandit problem formulations. We prove that CGP-UCB incurs
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sublinear contextual regret (i.e., prove that it competes with the optimal mapping from context
to actions) for a large class of composite kernel functions constructed in this manner. Lastly, we
evaluate our algorithm on two real-world case studies in the context of automated vaccine design,
and management of sensor networks. We show that in both these problems, properly taking into
account contextual information outperforms ignoring or naively using context.

In summary, as our main contributions we

• develop an efficient algorithm, CGP-UCB, for the contextual GP bandit problem;
• show that by flexibly combining kernels over contexts and actions, CGP-UCB can be

applied to a variety of applications;
• provide a generic approach for deriving regret bounds for composite kernel functions;
• evaluate CGP-UCB on two case studies, related to automated vaccine design and sensor

management.

2 Modeling Contextual Bandits with Gaussian Processes

We consider playing a game for a sequence of T (not necessarily known a priori) rounds. In each
round, we receive a context zt ∈ Z from a (not necessarily finite) set Z of contexts, and have to
choose an action st ∈ S from a (not necessarily finite) set S of actions. We then receive a payoff
yt = f(st, zt) + εt, where f : S × Z → R is an (unknown) function, and εt is zero mean random
noise (independent across the rounds). The addition of (externally chosen) contextual information
captures a critical component in many applications, and generalizes the k-armed bandit setting.

Since f is unknown, we will not generally be able to choose the optimal action, and thus incur
regret rt = sups′∈S f(s′, zt)− f(st, zt). After T rounds, our cumulative regret is RT =

∑T
t=1 rt.

The context-specific best action is a more demanding benchmark than the best action used in the
(context-free) definition of regret. Our goal will be to develop an algorithm which achieves sublinear
contextual regret, i.e., RT /T → 0 for T → ∞. Note that achieving sublinear contextual regret
requires learning (and competing with) the optimal mapping from contexts to actions.

Regularity assumptions are required, since without any there could be a single action s∗ ∈ S that
obtains payoff of 1, and all other actions obtain payoff 0. With infinite action sets, no algorithm will
be able to identify s∗ in finite time. In this paper, we assume that the function f : S × Z → R
is a sample from a known Gaussian process (GP) distribution1. A Gaussian process is a collection
of dependent random variables, one for each x ∈ X , such that every finite marginal distribution
is a multivariate Gaussian (while ensuring overall consistency) [4]. Here we use X = S × Z
to refer to the set of all action-context pairs. A GP (µ, k) is fully specified by its mean function
µ : X → R, µ(x) = E[f(x)] and covariance (or kernel) function k : X × X → R, k(x,x′) =
E[(f(x)−µ(x))(f(x′)−µ(x′))]. Without loss of generality [4], we assume that µ ≡ 0. We further
assume bounded variance by restricting k(x,x) ≤ 1, for all x ∈ X . The covariance function k
encodes smoothness properties of sample functions f drawn from the GP. Since the random variables
are action-context pairs, often there is a natural decomposition of the covariance function k into the
corresponding covariance functions on actions and contexts (Section 5).

A major computational benefit of working with GPs is the fact that posterior inference can be
performed in closed form. Suppose we have collected observations yT = [y1 . . . yT ]T at inputs
AT = {x1, . . . ,xT }, yt = f(xt) + εt with i.i.d. Gaussian noise εt ∼ N(0, σ2), the posterior
distribution over f is a GP with mean µT (x), covariance kT (x,x′) and variance σ2

T (x), with
parameters estimated as

µT (x) = kT (x)T (KT + σ2I)−1yT ,

kT (x,x′) = k(x,x′)− kT (x)T (KT + σ2I)−1kT (x′),

σ2
T (x) = kT (x,x),

where kT (x) = [k(x1,x) . . . k(xT ,x)]T and KT is the (positive semi-definite) kernel matrix
[k(x,x′)]x,x′∈AT

. The choice kernel function turns out to be crucial in regularizing the function
class to achieve sublinear regret (Section 4).

1We will also consider the case where f has low norm in the RKHS associated with the covariance k.
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3 The Contextual Upper Confidence Bound Algorithm
In the context-free case Z = ∅, the problem of trading off exploration and exploitation with payoff
functions sampled from a Gaussian process is studied by [3]. They show that a simple upper con-
fidence bound algorithm, GP-UCB (Equation 1), achieves sublinear regret. At round t, GP-UCB
picks action st = xt such that

st = argmax
s∈S

µt−1(s) + β
1/2
t σt−1(s), (1)

where βt are appropriate constants. Here µt−1(·) and σt−1(·) are the posterior mean and stan-
dard deviation conditioned on the observations (s1, y1), . . . , (st−1, yt−1). This GP-UCB objective
naturally trades off exploration (picking actions with uncertain outcomes, i.e., large σt−1(s)), and
exploitation (picking actions expected to do well, i.e., having large µt−1(s)).

We propose a natural generalization of GP-UCB, which incorporates contextual information

st = argmax
s∈S

µt−1(s, zt) + β
1/2
t σt−1(s, zt), (2)

where µt−1(·) and σt−1(·) are the posterior mean and standard deviation of the GP over the joint
set X = S × Z conditioned on the observations (s1, z1, y1), . . . , (st−1, zt−1, yt−1). Thus, when
presented with context zt, this algorithm uses posterior inference to predict mean and variance for
each possible decision s, conditioned on all past observations (involving both the chosen actions, the
observed contexts as well as the noisy payoffs). We call the greedy algorithm implementing rule 2
the contextual Gaussian process UCB algorithm (CGP-UCB). As we will show in Section 5, this
algorithm allows to incorporate various assumptions about the dependencies of the payoff function
on the chosen actions and observed contexts. It also allows us to generalize several approaches
proposed in the literature [3, 5, 6]. In the following, we will prove that in many practical applications,
CGP-UCB attains sublinear contextual regret (i.e., is able to compete with the optimal mapping
from contexts to actions).

4 Bounds on the Contextual Regret
Bounding the contextual regret of CGP-UCB is a challenging problem, since the regret is measured
with respect to the best action for each context. Intuitively, the amount of regret we incur should
depend on how quickly we can gather information about the payoff function, which now jointly
depends on context and actions. In the following, we show that the contextual regret of CGP-UCB
is bounded by an intuitive information-theoretic quantity, which quantifies the mutual information
between the observed context-action pairs and the estimated payoff function f .

We start by reviewing the special case of [3] where no context information is provided. It is
shown that in this context-free case, the regret RT of the GP-UCB algorithm can be bounded as
O∗(
√
TγT ), where γT is defined as:

γT := max
A⊂S:|A|=T

I(yA; f),

where I(yA; f) = H(yA)− H(yA|f) quantifies the reduction in uncertainty (measured in terms of
differential Shannon entropy [7]) about f achieved by revealing yA. In the multivariate Gaussian
case, the entropy can be computed in closed form: H(N(µ,Σ)) = 1

2 log |2πeΣ|, so that I(yA; f) =
1
2 log |I + σ−2KA|, whereKA = [k(s, s′)]s,s′∈A is the Gram matrix of k evaluated on set A ⊆ S.

For the contextual case, our regret bound comes also in terms of the quantity γT , redefined so that the
information gain I(yA; f) now depends on the observations yA = [y(x)]x∈A of the joint context-
action pairs x = (s, z), and f : S × Z → R is the payoff function over the context-action space.
Consequently, the kernel matrixKA = [k(x,x′)]x,x′∈A is defined over context-action pairs. Using
this notion of information gain γT , we lift the results of [3] to the much more general contextual
bandit setting, shedding further light on the connection between bandit optimization and information
gain. In Section 5, we show how to bound γT for composite kernels, combining possibly different
assumptions about the regularity of f in the action space S and context space Z.

We consider the same three settings as analyzed in [3]. Note that none of the results subsume each
other, and so all cases may be of use. For the first two settings, we assume a known GP prior and (1)
a finite X and (2) infinite X with mild assumptions about k. A third (and perhaps more “agnostic”)
way to express assumptions about f is to require that f has low “complexity” as quantified in terms
of the Reproducing Kernel Hilbert Space (RKHS, [8]) norm associated with kernel k.
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Theorem 1 Let δ ∈ (0, 1). Suppose one of the following assumptions holds

1. X is finite, f is sampled from a known GP prior with known noise variance σ2, and βt =
2 log(|X|t2π2/6δ)

2. X ⊆ [0, r]d is compact and convex, d ∈ N, r > 0. Suppose f is sampled from a known
GP prior with known noise variance σ2, and that k(x,x′) satisfies the following high
probability bound on the derivatives of GP sample paths f : for some constants a, b > 0,

Pr {supx∈X |∂f/∂xj | > L} ≤ ae−(L/b)2 , j = 1, . . . , d.

Choose βt = 2 log(t22π2/(3δ)) + 2d log
(
t2dbr

√
log(4da/δ)

)
.

3. X is arbitrary; ||f ||k ≤ B. The noise variables εt form an arbitrary martingale difference
sequence (meaning that E[εt | ε1, . . . , εt−1] = 0 for all t ∈ N), uniformly bounded by σ.
Further define βt = 2B2 + 300γt ln3(t/δ).

Then the contextual regret of CGP-UCB is bounded by O∗(
√
TγTβT ) w.h.p. Precisely,

Pr
{
RT ≤

√
C1TβT γT + 2 ∀T ≥ 1

}
≥ 1− δ.

where C1 = 8/ log(1 + σ−2).

Theorem 1 (proof given in the Appendix) shows that, in case (1) and (2), with high probability
over samples from the GP, the cumulative contextual regret is bounded in terms of the maximum
information gain with respect to the GP defined over S × Z. In case of assumption (3), a regret
bound is obtained in a more agnostic setting, where no prior on f is assumed, and much weaker
assumptions are made about the noise process. Note that case (3) requires a bound B on ||f ||k. If
no such bound is available, standard guess-and-doubling arguments can be used.

5 Applications of CGP-UCB
By choosing different kernel functions k : X×X → R, the CGP-UCB algorithm can be applied to a
variety of different applications. A natural approach is to start with kernel functions kZ : Z×Z → R
and kS : S × S → R on the space of contexts and actions, and use them to derive the kernel on the
product space.

5.1 Constructing Composite Kernels
One possibility is to consider a product kernel k = kS ⊗ kZ , by setting (kS ⊗ kZ)((s, z), (s′, z′)) =
kZ(z, z′)kS(s, s′). The intuition behind this product kernel is a conjunction of the notions of simi-
larities induced by the kernels over context and action spaces: Two context-action pairs are similar
(large correlation) if the contexts are similar and actions are similar (Figure 1(a)). Note that many
kernel functions used in practice are already in product form. For example, if kZ and kS are squared
exponential kernels (or Matérn kernels with smoothness parameters ν), then the product k = kZ⊗kS
is a squared exponential kernel (or Matérn kernels with smoothness parameters ν). Similarly, if kS
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Figure 1: Illustrations of composite kernel functions that can be incorporated into CGP-UCB. (a) Product of
squared exponential kernel and linear kernel; (b) additive combination of a payoff function that smoothly de-
pends on context, and exhibits clusters of actions. In general, context and action spaces are higher dimensional.
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and kZ have finite rank mS and mZ (i.e., all kernel matrices over finite sets have rank at most mS

and mZ respectively), then kS ⊗ kZ has finite rank mSmZ . However, other kernel functions can be
naturally combined as well.

An alternative is to consider the additive combination (kS ⊕ kZ)((s, z), (s′, z′)) = kZ(z, z′) +
kS(s, s′) which is positive definite as well. The intuition behind this construction is that a GP with
additive kernel can be understood as a generative model, which first samples a function fS(s, z) that
is constant along z, and various along s with regularity as expressed by ks; it then samples a function
fz(s, z), which varies along z and is constant along s; then f = fs + fz. Thus, the fz component
models overall trends according to the context (e.g., encoding assumptions about similarity within
clusters of contexts), and the fS models action-specific deviation from this trend (Figure 1(b)). In
Section 5.3, we provide examples of applications that can be captured in this framework.

5.2 Bounding the Information Gain for Composite Kernels.

Since the key quantity governing the regret is the information gain γT , we would like to find a
convenient way of bounding γT for composite kernels (kS ⊗ kZ and kS ⊕ kZ), plugging in different
regularity assumptions for the contexts (via kZ) and actions (via kS). More formally, let us define

γ(T ; k;V ) = max
A⊆V,|A|≤T

1

2
log
∣∣∣I + σ−2[k(v,v′)]v,v′∈A

∣∣∣,
which quantifies the maximum possible information gain achievable by sampling T points in a GP
defined over set V with kernel function k. In [3, Theorem 5], bounds on γ(T ; k;V ) were derived
for common kernel functions including the linear (γ(T ; k;V ) = O(d log T ) for d-dimensions),
the squared exponential (γ(T ; k;V ) = O((log T )d+1)) and Matérn kernels (γ(T ; k;V ) =
O(T d(d+1)/(2ν+d(d+1)) log T ) for smoothness parameter ν).

In the following, we show how γ(T ; k;V ) can be bounded for composite kernels of the form kS⊗kZ
and kS ⊕ kZ , dependent on γ(T ; kS ;S) and γ(T ; kZ ;Z).

Theorem 2 Let kZ be a kernel function on Z with rank at most d (i.e., all Gram matrices over
arbitrary finite sets of points A ⊆ Z have rank at most d). Then

γ(T ; kS ⊗ kZ ;X) ≤ dγ(T ; kS ;S) + d log T.

The assumptions of Theorem 2 are satisfied, for example, if |Z| < ∞ and rk KZ = d, or if kZ is a
d-dimensional linear kernel on Z ⊆ Rd. Theorem 2 also holds with the roles of kZ and kS reversed.

Theorem 3 Let kS and kZ be kernel functions on S and Z respectively. Then for the additive
combination k = kS ⊕ kZ defined on X it holds that

γ(T ; kS ⊕ kZ ;X) ≤ γ(T ; kS ;S) + γ(T ; kZ ;Z) + 2 log T.

Proofs of Theorems 2 and 3 are given in the Appendix. By combining the results above with the
information gain bounds of [3], we can immediately obtain that, e.g., γT for the product of a d1

dimensional linear kernel and a d2 dimensional Gaussian kernel is O(d1(log T )d2+1).

5.3 Example applications.

We now illustrate the generality of the CGP-UCB approach, by fleshing out four possible applica-
tions. In Section 6, we experimentally evaluate CGP-UCB on two of these applications.

Online advertising and news recommendation. Suppose an online service would like to display
query-specific ads. This is the textbook contextual bandit problem [9]. There are |S| = m different
ads to select from, and each round we receive, for each ad s ∈ S, a feature vector zs. Thus, the
complete context is z = [z1, . . . , zm]. [9] model the expected payoff for each action as a (unknown)
linear function µ(s, z) = zTs θ

∗
s . Hereby, θ∗s models the dependence of action s on the context z.

Besides online advertising, a similar model has been proposed and experimentally studied by [6]
for the problem of contextual news recommendation (see Section 7 for a discussion). Both these
problems are addressed by CGP-UCB by choosing KS = I as the m×m identity matrix, and KZ
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Figure 2: CGP-UCB applied to the average (a) and maximum regret over all molecules (b) for three methods
on MHC benchmark. (c) Context similarity using inter task predictions.

as the linear kernel on the features2. In this application, additive kernel combinations may be useful
to model temporal dependencies of the overall click probabilities (e.g., during evening, users may
or may not be more likely to click on an ad than during business hours).

Learning to control complex systems. Suppose we have a complex system and would like to
achieve some desired behavior, for example robot walking [10]. In such a setting, we may wish to
estimate a controller in a data-driven manner; however, we would also like to maximize the perfor-
mance of the estimated controller, resulting in an exploration–exploitation tradeoff. In addition to
controller parameters s ∈ S ⊆ RdS , the system may be exposed to changing (in an uncontrollable
manner) environmental conditions, which are provided as context z ∈ Z ⊆ RdZ . The goal is thus
to learn, which control parameters to apply in which conditions to maximize system performance.
In this case, we may consider using a linear kernel kZ(z, z′) = zT z′ to model the dependence of
the performance on environmental features, and a squared exponential kernel kS(s, s′) to model
the smooth but nonlinear response of the system to the chosen control parameters. Theorems 1
and 2 bound RT = O∗(

√
TdZ(log T )dS+1). Additive kernel combinations may allow to model

that control in some contexts (environments) is inherently more difficult (or noisy).

Multi-task experimental design. Suppose we would like to perform a sequence of related
experiments. In particular, in Section 6.1 we consider the case of vaccine design. The aim is to
discover peptide sequences which bind to major histocompatibility complex molecules (MHC).
MHC molecules present fragments of proteins from within the cell to T cells, resulting in healthy
cells being left alone, while cells containing foreign proteins to be attacked by the immune system.
Here, each experiment is associated with a set of features (encoding the MHC alleles), which are
provided as context z. The goal in each experiment is to choose a stimulus (the vaccine) s ∈ S
that maximizes an observed response (binding affinity). In this case, we may consider using a finite
inter-task covariance kernel KZ with rank mZ to model the similarity of different experiments, and
a Gaussian kernel kS(s, s′) to model the smooth but nonlinear dependency of the stimulus response
on the experimental parameters. Theorems 1 and 2 bound RT = O∗(

√
TmZ(log T )dS+1).

Spatiotemporal monitoring with sensor networks. Suppose we have deployed a network of
sensors, which we wish to use to monitor the maximum temperature in a building. Due to battery
limitations, we would like, at each timestep, to only activate few sensors. We can cast this problem
in the contextual bandit setting, where time of day is considered as the context z ∈ Z, and each
action s ∈ S corresponds to picking a sensor. Due to the fact that the sun is moving relative to the
building, the hottest point in the building changes depending on the time of the day, and we would
like to learn which sensors to activate at which time of the day. In this problem, we would estimate
a joint spatio-temporal covariance function (e.g., using the Matérn kernel), and use it for inference.
We show experimental results for this problem in Section 6.2.

6 Experiments
In our two experimental case studies, we aim to study how much context information can help. We
compare three methods: Ignoring (correlation between) contexts by running a separate instance of
GP-UCB for every context (i.e., ignoring measurements from all but the current molecule or time);

2[6] also propose a more complex hybrid model that uses features shared between the actions. This model
is also captured in our framework by adding a second kernel function, which composes a low-rank (instead of
I) matrix with the linear kernel.
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Figure 3: CGP-UCB applied to temperature data from a network of 46 sensors at Intel Research Berkeley.

running a single instance of GP-UCB, merging together the context information (i.e., ignoring the
molecule or time information); and running CGP-UCB, conditioning on measurements made at
different contexts (MHC molecules considered / times of day) using the product kernel.

6.1 Multi-task Bayesian Optimization of MHC class-I binding affinity
We perform experiments in the multi-task vaccine design problem introduced in Section 5.3. In
our experiments, we focus on a subset of MHC class I molecules that have affinity binding scores
available. Each experimental design task corresponds to searching for maximally binding peptides,
which is a vital step in the design of peptide-based vaccines. We use the data from [11], which is
part of a benchmark set of MHC class I molecules [12]. The data contains binding affinities (IC50

values), as well as features extracted from the peptides. Peptides with IC50 values greater than 500
nM were considered non-binders, all others binders. We convert the IC50 values into negative log
scale, and normalize them so that 500nM corresponds to zero, i.e. − log10(IC50) + log10(500).

In total, we consider identifying peptides for seven different MHC molecules (i.e., seven related
tasks = contexts). The context similarity was obtained using the hamming distance between amino
acids in the binding pocket [11] (see Figure 2(c)), and we used the Gaussian kernel on the extracted
features. We used a random subset of 1000 examples to estimate hyperparameters, and then
considered each MHC allele in the order shown in Figure 2(c). For each MHC molecule, we ran
CGP-UCB for 50 trials.

From Figure 2(a) we see that for the first three molecules (up to trial 150), which are strongly
correlated, merging contexts and CGP-UCB perform similarly, and both perform better than
ignoring observations from other MHC molecules previously considered. However, the fourth
molecule (A 0201) has little correlation with the earlier ones, and hence simply merging contexts
performs poorly. We also wish to study, how long it takes, in the worst-case over all seven
molecules, to identify a peptide with binding affinity of desired strength. Therefore, in Figure 2(b),
we plot, for each t from 1 to 50, the largest (across the seven tasks) discrepancy between the
maximum achievable affinity, and the best affinity score observed in the first t trials. We find that
by exploiting correlation among contexts, CGP-UCB outperforms the two baseline approaches.

6.2 Learning to Monitor Sensor Networks
We also apply CGP-UCB to the spatiotemporal monitoring problem described in Section 5. We
use data from 46 sensors deployed at Intel Research, Berkeley. The data set contains 4 days of
data, sampled at 5 minute intervals. We take the first 24 hours to fit (by maximizing the marginal
likelihood) parameters of a spatio-temporal covariance function (we choose the Matérn kernel with
ν = 2.5). On the remaining 3 days of data (see Figure 3(c)), we then proceed by, at each time step,
sequentially activating 5 sensors and reporting the regret of the average and maximum temperature
measured (hereby the regret is the error in estimating the actual maximum temperature reported by
any of the 46 sensors).

Figure 3(a) (using the maximum temperature among the 5 readings each time step) and 3(b) (using
the average temperature) show the results of this experiment. Notice that ignoring contexts performs
poorly. Merging contexts (single instance of context-free GP-UCB) performs best for the first few
timesteps (since temperature is very similar, and the highest temperature sensor does not change).
However, after running CGP-UCB for more than one day of data (i.e., until context reoccurs), it
outperforms the other methods, since it is able to learn to query the maximum temperature sensors
as a function of the time of the day.
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7 Related Work
The use of upper confidence bounds to trade off exploration and exploitation has been introduced
by [13], and studied thereafter [1, 14, 15, 16]. The approach for the classical k-armed bandit set-
ting [17] has been generalized to more complex settings, such as infinite action sets and linear
payoff functions [14, 18], Lipschitz continuous payoff functions [15] and locally-Lipschitz func-
tions [19]. However, there is a strong tradeoff between strength of the assumptions and achievable
regret bounds. For example, while O(d

√
T log T ) can be achieved in the linear setting [14], if only

Lipschitz continuity is assumed, regret bounds scale as Ω(T
d+1
d+2 ) [15]. Srinivas et al [3] analyze the

case where the payoff function is sampled from a GP, which encodes configurable assumptions. The
present work builds on and strictly generalizes their approach. In fact, in the context free case, CGP-
UCB is precisely the GP-UCB algorithm of [3]. The ability to incorporate contextual information,
however, significantly expands the class of applications of GP-UCB. Besides handling context and
bounding the stronger notion of contextual regret, in this paper we provide generic techniques for
obtaining regret bounds for composite kernels. An alternative rule (in the context free setting) is the
Expected Improvement algorithm [20], for which no bounds on the cumulative regret are known.
For contextual bandit problems, work has focused on the case of finitely many actions, where the
goal is to obtain sublinear contextual regret against classes of functions mapping context to actions
[1]. This setting resembles (multi-class) classification problems, and regret bounds can be given
in terms of the VC dimension of the hypothesis space [2]. [6] present an approach, LinUCB, that
assumes that payoffs for each action are linear combinations (with unknown coefficients) of context
features. In [5], it is proven that a modified variant of LinUCB achieves sublinear contextual regret.
Theirs is a special case of our setting (assuming a linear kernel for the contexts and diagonal kernel
for the actions). Another related approach is taken by Slivkins [21], who presents several algorithms
with sublinear contextual regret for the case of infinite actions and contexts, assuming Lipschitz
continuity of the payoff function in the context-action space. In [22], this approach is generalized
to select sets of actions, and applied to a problem of diverse retrieval in large document collections.
However, in contrast to CGP-UCB, this approach does not enable stronger guarantees for smoother
or more structured payoff functions.
The construction of composite kernels is common in the context of multitask learning with GPs
[23, 24, 25]. Instead of considering a scalar GP with joint feature space f : S × Z → R, they
consider a multioutput GP fvec : S → RZ , and introduce output correlations as linear combinations
of latent channels or convolutions of GPs [25]. Our results are complementary to this line of work, as
we can make use of such kernel functions for “multi-task Bayesian optimization”. Theorems 2 and 3
provide convenient ways for deriving regret bounds for such problems. There has been a significant
amount of work on GP optimization and response surface methods [26]. For example, [27] consider
sharing information across multiple sessions in a problem of parameter identification in animation
design. We are not aware of theoretical convergence results in case of context information, and our
Theorem 1 provides the first general approach to obtain rates.

8 Conclusions
We have described an algorithm, CGP-UCB, which addresses the exploration–exploitation tradeoff
in a large class of contextual bandit problems, where the regularity of the payoff function defined
over the action–context space is expressed in terms of a GP prior. As we discuss in Section 5, by
considering various kernel functions on actions and contexts this approach allows to handle a variety
of applications. We show that, similar as in the context free case studied by [3], the key quantity
governing the regret is a mutual information between experiments performed by CGP-UCB and the
GP prior (Theorem 1). In contrast to prior work, however, our approach bounds the much stronger
notion of contextual regret (competing with the optimal mapping from contexts to actions). We
prove that in many practical settings, as discussed in Section 5, the contextual regret is sublinear. In
addition, Theorems 2 and 3 provide tools to construct bounds on this information theoretic quantity
given corresponding bounds on the context and actions. We also demonstrate the effectiveness of
CGP-UCB on two applications: computational vaccine design and sensor network management. In
both applications, we show that utilizing context information in the joint covariance function reduces
regret in comparison to ignoring or naively using the context.
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A Contextual Regret Bounds CGP-UCB

In this section, we provide details for the proof of Theorem 1. The proofs builds on work by [3],
modifying and generalizing their results to handle the stronger notion of contextual regret.

Theorem 4 ([3]) Let δ ∈ (0, 1). Suppose one of the following conditions holds

1. X is finite, f is sampled from a known GP prior with known noise variance σ2, and βt =
2 log(|X|t2π2/6δ)

2. The noise variables εt are uniformly bounded by σ and βt = 2‖f‖2k + 300γt ln3(t/δ).

Then
Pr
{
∀t, ∀x ∈ D, |µt−1(x)− f(x)| ≤ β1/2

t σt−1(x)
}
≥ 1− δ.

Lemma 4.1 Fix t ≥ 1. If |f(x) − µt−1(x)| ≤ β
1/2
t σt−1(x) for all x ∈ X , then the contextual

regret rt is bounded by 2β
1/2
t σt−1(xt).

Proof Let s∗t ∈ arg sups∈S f(s, zt) be an optimal action in round t. By definition of st:
µt−1(st, zt) + β

1/2
t σt−1(st, zt) ≥ µt−1(s∗t , zt) + β

1/2
t σt−1(s∗t , zt) ≥ f(s∗t , zt). Therefore,

rt = f(s∗t , zt)− f(st, zt) ≤ β1/2
t σt−1(st, zt) + µt−1(st, zt)− f(st, zt) ≤ 2β

1/2
t σt−1(st, zt).

Lemma 4.2 ([3]) The information gain for the points selected can be expressed in terms of the
predictive variances. If fT = (f(xt)) ∈ RT :

I(yT ;fT ) =
1

2

∑T

t=1
log
(
1 + σ−2σ2

t−1(xt)
)
.

Theorem 5 Pick δ ∈ (0, 1) and let βt be defined as in Theorem 4. Then, the following holds with
probability ≥ 1− δ:

RT ≤
√
TβTC1I(yT ;fT ) ≤

√
TC1βT γT ∀T ≥ 1,

where C1 := 8/ log(1 + σ−2) ≥ 8σ2.

Proof By Theorem 4 and Lemma 4.1, we have that {r2
t ≤ 4βtσ

2
t−1(xt) ∀t ≥ 1} with probability

≥ 1− δ. Now, βt is nondecreasing, so that

4βtσ
2
t−1(xt) ≤ 4βTσ

2(σ−2σ2
t−1(xt))

≤ 4βTσ
2C2 log(1 + σ−2σ2

t−1(xt))

with C2 = σ−2/ log(1+σ−2) ≥ 1, since s2 ≤ C2 log(1+s2) for s ∈ [0, σ−2], and σ−2σ2
t−1(xt) ≤

σ−2k(xt,xt) ≤ σ−2. Noting that C1 = 8σ2C2, the result follows from Lemma 4.2. The theorem
statement then is a consequence of the Cauchy-Schwarz inequality: R2

T ≤ T
∑T
t=1 r

2
t .

Handling Assumption (2) in Theorem 1 is more complex, as there is no straightforward generaliza-
tion of Theorem 4. We first state a result of [3] that guarantees that the confidence bands are accurate
at the inputs chosen by CGP-UCB.

Lemma 5.1 ([3]) Pick δ ∈ (0, 1) and set βt = 2 log(πt/δ), where
∑
t≥1 π

−1
t = 1, πt > 0. Then,

|f(xt)− µt−1(xt)| ≤ β1/2
t σt−1(xt) ∀t ≥ 1

holds with probability ≥ 1− δ.
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Similarly as done by [3], for the sake of analysis, we use a set of discretizations St ⊂ S, where
St will be used at time t in the analysis. Notice, that in contrast to the context-free setting of [3],
additional subtleties arise, since we analyze the stronger notion of contextual regret. Our proof also
only needs smoothness conditions (essentially ensuring Lipschitz continuity of the sample paths) on
the action set S.

Lemma 5.2 Pick δ ∈ (0, 1) and set βt = 2 log(|St|πt/δ), where
∑
t≥1 π

−1
t = 1, πt > 0. Then,

|f(s, zt)− µt−1(s, zt)| ≤ β1/2
t σt−1(s, zt) ∀s ∈ St, ∀t ≥ 1

holds with probability ≥ 1− δ.

Proof The proof is identical to that in Theorem 4, except now we use St at each round.

Using Assumption (2) and the union bound, we have that

Pr {∀j, ∀s ∈ S, |∂f/(∂sj)| < L} ≥ 1− dae−L
2/b2 .

which implies that, with probability at least 1− dae−L2/b2 , we have

∀s, s′ ∈ S, z ∈ Z, |f(s, z)− f(s′, z)| ≤ L‖s− s′‖1 . (3)

This allows us to obtain confidence on s?t as follows.

Let us choose the discretization St of size (τt)
d so that for all s ∈ St

‖s− [s]t‖1 ≤ rd/τt,

where [s]t denotes the closest point in St to s. A sufficient discretization has each coordinate in S
with τt uniformly spaced points.

Lemma 5.3 Pick δ ∈ (0, 1) and set βt = 2 log(2πt/δ) + 4d log(dtbr
√

log(2da/δ)), where∑
t≥1 π

−1
t = 1, πt > 0. Let τt = dt2br

√
log(2da/δ) Let [s∗t ]t denotes the closest point in St

to s∗t . Hence, Then,

|f(s∗t , zt)− µt−1([s∗t ]t, zt)| ≤ β
1/2
t σt−1([s∗t ]t, zt) +

1

t2
∀t ≥ 1

holds with probability ≥ 1− δ.

Proof Using (3), we have that with probability greater than 1− δ/2,

∀s, s′ ∈ S, |f(s, zt)− f(s′, zt)| ≤ b
√

log(2da/δ)‖s− s′‖1 .

Hence,
∀s ∈ St, z ∈ Z |f(s, z)− f([s]t, z)| ≤ rdb

√
log(2da/δ)/τt .

Now by choosing τt = dt2br
√

log(2da/δ), we have that

∀s ∈ St, |f(s, zt)− f([s]t, zt)| ≤
1

t2

This implies that |Dt| = (dt2br
√

log(2da/δ))d. Using δ/2 in Lemma 5.2, we can apply the
confidence bound to [s∗t ]t (as this is an element of St) to obtain the result.

Lemma 5.4 Pick δ ∈ (0, 1) and set βt = 2 log(4πt/δ) + 4d log(dtbr
√

log(4da/δ)), where∑
t≥1 π

−1
t = 1, πt > 0. Then, with probability at least 1 − δ, for all t ∈ N, the contextual

regret is bounded as follows:

rt ≤ 2β
1/2
t σt−1(st, zt) +

1

t2
.
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Proof We use δ/2 in both Lemma 5.1 and Lemma 5.3, so that both these events hold with probability
at least 1 − δ. Note that the specification of βt in Lemma 5.4 is greater than the specification used
in Lemma 5.1 (with δ/2), so this choice is valid.

By definition of st: µt−1(st, zt) + β
1/2
t σt−1(st, zt) ≥ µt−1([s∗t ]t, zt) + β

1/2
t σt−1([s∗t ]t, zt). Also,

by Lemma 5.3, we have that µt−1([s∗t ]t, zt) + β
1/2
t σt−1([s∗t ]t) + 1/t2 ≥ f(s∗t , zt), which implies

µt−1(st, zt) + β
1/2
t σt−1(st, zt) ≥ f(s∗t , zt)− 1/t2. Therefore,

rt = f(s∗t , zt)− f(st, zt)

≤ β1/2
t σt−1(st, zt) + 1/t2 + µt−1(st, zt)− f(st, zt)

≤ 2β
1/2
t σt−1(st, zt) + 1/t2 .

which completes the proof.

We are finally ready to complete the proof of Theorem 1.

Proof [of Theorem 1] In case of Assumption (1) or (3), the proof follows by combining Theorem 4
with Theorem 5.

In case of Assumption (2), as shown in the proof of Theorem 5, with probability greater than 1− δ,∑T

t=1
4βtσ

2
t−1(st, zt) ≤ C1βT γT ∀T ≥ 1.

Therefore the Cauchy-Schwarz inequality guarantees:∑T

t=1
2β

1/2
t σt−1(st, zt) ≤

√
C1TβT γT ∀T ≥ 1,

Hence, using Lemma 5.4, ∑T

t=1
rt ≤

√
C1TβT γT + π2/6 ∀T ≥ 1,

(since
∑

1/t2 = π2/6). Theorem 1 now follows.

B Bounds for Composite Kernels

Proof [of Theorem 2] Let A ⊆ X , |A| = T . Let AS = {s : ∃z s.t. (s, z) ∈ A} and AZ =
{z : ∃s s.t. (s, z) ∈ A}. Define Ā = AS × AZ . Due to monotonicity of mutual information,
I(f ; yĀ) ≥ I(f ; yA). Let KAZ

and KAS
be the Gram matrices for kS and kZ on AS and AZ

respectively, and let λ1 ≥ · · · ≥ λT be the eigenvalues (according to their multiplicity) of KAS
, and

η1 ≥ · · · ≥ ηT be those of KAZ
. Note that the assumption of kZ having finite rank d implies that

ηd+1 = · · · = ηT = 0. Further note that properties of the Kronecker product imply that

2I(f ; yĀ) = log
∣∣∣I + σ−2KAZ

⊗KAS

∣∣∣ =

T∑
i=1

d∑
j=1

log(1 + σ−2λiηj) = d

T∑
i=1

log(1 + σ−2λiηmax)

Now note that the assumption kS(s, s′) ≤ 1 and kZ(z, z′) ≤ 1 implies that ηmax ≤ T . Therefore, it
holds that

2I(f ; yĀ) ≤ d
T∑
i=1

log ηT (1 + σ−2λi) = d log T + d

T∑
i=1

log ηT (1 + σ−2λi)

= d log T + d log
∣∣∣I + σ−2KAS

∣∣∣ ≤ dγ(T ; kS ;S) + d log T.
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Proof [of Theorem 3] We first show that for two arbitrary kernel functions k1, k2 on X , it holds that

γ(T ; k1 + k2;V ) ≤ γ(T ; k1;V ) + γ(T ; k2;V ).

Let A ⊆ X , and let Ki be the Gram matrix on A for ki, for i ∈ {1, 2}. From Theorem IV in [28] it
follows that

log
∣∣∣I + σ−2(K1 + K2)

∣∣∣ ≤ log
∣∣∣I + σ−2K1

∣∣∣+ log
∣∣∣I + σ−2K2

∣∣∣ ≤ γ(T ; k1;V ) + γ(T ; k2;V )

Now note that kS ⊕ kZ = kS ⊗ eZ + eS ⊗ kZ , where eS(s, s′) = 1 is the constant ker-
nel on S, and eZ is the constant kernel on Z. The statement then follows from the fact that the
constant kernel can be represented as a linear kernel of dimension 1, and then applying Theorem 2.
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