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Abstract

We propose a large margin method for asym-
metric learning with ellipsoids, called eMIL,
suited to multiple instance learning (MIL).
We derive the distance between ellipsoids
and the hyperplane, generalising the stan-
dard support vector machine. Negative bags
in MIL contain only negative instances, and
we treat them akin to uncertain observations
in the robust optimisation framework. How-
ever, our method allows positive bags to cross
the margin, since it is not known which in-
stances within are positive.

We show that representing bags as ellipsoids
under the introduced distance is the most ro-
bust solution when treating a bag as a ran-
dom variable with finite mean and covari-
ance. Two algorithms are derived to solve
the resulting non-convex optimization prob-
lem: a concave-convex procedure and a quasi-
Newton method. Our method achieves com-
petitive results on benchmark datasets. We
introduce a MIL dataset from a real world
application of detecting wheel defects from
multiple partial observations, and show that
eMIL outperforms competing approaches.

1. Introduction

In many applications of supervised learning, the cost
of obtaining ground truth labels is a significant bottle-
neck. This has led to research on weakly labeled data,
among which the framework of multiple instance learn-

Proceedings of the 30

th
International Conference on Ma-

chine Learning, Atlanta, Georgia, USA, 2013. JMLR:

W&CP volume 28. Copyright 2013 by the author(s).

ing (MIL) has shown promising results. In parallel,
there has been developments in robust optimization,
where data uncertainty is taken into account. Mo-
tivated by a real world application of defect detec-
tion based on multiple partial observations, we pro-
pose a novel approach based on both MIL and robust
optimization. In this paper, we consider the binary
classification problem (labels y 2 {�1,+1}) in the
MIL setting (Dietterich et al., 1997). Instead of hav-
ing one label per example xj , we are given B bags
of examples where each bag {xi1, . . . ,xij , . . . ,xini}Bi=1

consists of ni instances. Unlike standard supervised
learning, labels are provided only at the bag level such
that yi = +1 if at least one of yi1, . . . , yini is pos-
itive, and the bag is negative (yi = �1) only if all
yi1 = . . . = yini = �1. Unfortunately, due to the weak
labeling, it is unclear during training time how to allo-
cate the positive label. Since any number of examples
in a positive bag may be positive, one would naively
have to look at all possible labelings that include at
least one positive label. This results in potentially ex-
pensive computations involving the solution of a com-
binatorial optimization problem. See Kim & la Torre
(2010) for an overview of recent MIL methods.

We propose ellipsoidal multiple instance learning
(eMIL) where we relax the function over the set of
instance labels and approximate a bag by the first and
second moment of the empirical distribution. I.e., we
take the arithmetic mean and empirical covariance ma-
trix of the within bag instances. Neglecting higher or-
der moments gets rid of the combinatorial optimisation
problem and enforces regularisation.

Our proposed method (eMIL) results in a modular
two stage algorithm: (1) estimate the ellipsoids, and
(2) optimise the generalised large margin algorithm.
An additional benefit is that our approach gives an
instance level classifier (instead of a bag level classi-
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fier), which may be important in some applications.
We first derive the optimization problem to find a
maximum-margin type classifier for ellipsoids, where
one class of ellipsoids can overlap with the decision
boundary (Section 2). Two di↵erent ways of scal-
ing the empirical covariance matrix for di↵erent dis-
tributional assumptions on the bags are presented in
Section 2.3 and Section 2.4. We show in Section 2.4
that solving this optimisation problem is equivalent to
treating each bag as a random variable and robustly
maximizing the margin between instances distributed
according to this random variable under asymmetric
probabilistic constraints over all distributions with fi-
nite mean and covariance. To solve the resulting non-
convex optimisation problem a quasi Newton method
and a decomposition of the objective into the di↵er-
ence of two convex functions is presented in Section 3.
The method compares favourably to state of the art
MIL methods with respect to accuracy on benchmark
datasets (Section 4). Finally we introduce our moti-
vating application: a safety critical real world problem
of detecting wheel defects, and show that eMIL has
better accuracy than recent methods (Section 5).

2. Detection with ellipsoids

We derive a maximum-margin type classifier for the
problem of learning with positive and negative ellip-
soidal examples. Our aim is to exploit the structure
of a bag in the MIL setting and not just treat the in-
stances as individual separate points. We capture this
bag structure by the empirical mean and the empirical
covariance matrix of all the instances in a bag. This
naturally leads to the interpretation of a bag as an
ellipsoid. The notion that a positive bag label only
guarantees one instance to be positive, is represented
by letting ellipsoids with positive label overlap the neg-
ative half space. Negatively labeled ellipsoids on the
other hand are required to be maximally distant from
the decision surface, since we know that all instances
in a bag with negative label are indeed negative.

Recall that an ellipsoid in x 2 Rd is given by a positive
semidefinite covariance matrix P 2 Sd+, and a central
vector q 2 Rd by

(x � q)>P�1(x � q) = 1. (1)

Given a set of examples and corresponding labels
{(Pi,qi), yi}Bi=1, we would like to find a linear sepa-
rating hyperplane with w 2 Rd and b 2 R

w>x+ b = 0 (2)

which follows the maximum margin principle. There-
fore for the predictor based on ellipsoid i given by
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Figure 1. Derivation of the prediction function. The fol-

lowing three cases are distinguished: (a) ellipsoid is fully

in the negative-half space, then the distance is the minimal

distance of a point on the ellipsoid to the hyperplane; (b)

ellipsoid is fully in the positive half-space, then the dis-

tance is the maximal distance from the hyperplane and (c)

ellipsoid intersects the hyperplane, then the distance is to

the point maximally in the positive half-space. This means

that for all three cases the distance is always to the point

on the ellipse, that is maximally in the direction of the hy-

perplane normal vector w and the sign is the sign of the

half-space where that point lies in.

f(Pi;qi), we would like to solve the following regu-
larized empirical risk problem

min
w,b

BX

i=1

`(yif(Pi;qi)) +
�

2
kwk2 (3)

where � is the regularisation parameter and `(t) =
max(0, 1 � t) is the hinge loss.

2.1. Optimisation problem

The prediction function f(Pi,qi) should give the
signed distance of the ellipsoid to the hyperplane. By
reasoning about the geometry of the problem (refer to
Figure 1), we get the following distance for any ellip-
soid to the hyperplane.

Proposition 1. Given an ellipsoid, Equation (1), and
a hyperplane, Equation (2), and taking the asymme-
try of positive and negative ellipsoids into account, the
signed distance from the ellipsoid to the hyperplane is
given by

1

kwk

⇣p
w>Pw +w>q+ b

⌘
. (4)

See Appendix C in the supplementary file for the full
derivation of this distance. Therefore the prediction
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function is given by

f(P;q) =
p
w>Pw +w>q+ b. (5)

Substituting Equation (5) into Equation (3) we obtain
the following optimisation problem, which we call el-
lipsoidal multiple instance learning (eMIL).

min
w,b

BX

i=1

`
⇣
yi
⇣p

w>Piw +w>qi + b
⌘⌘

+
�

2
kwk2. (6)

Equation (6) is subtly di↵erent from robust opti-
mization problems. We discuss this further in Sec-
tion 2.5. Note that the optimization problem given
by Equation (6) is non-convex. This is due to the

term �
p
w>Piw in the hinge loss for positive bags

(max
⇣
0, 1 �

⇣p
w>Piw +w>qi + b

⌘⌘
), which is a

concave function in w. It can also be observed that
the problem is not a second order cone program by
decomposing the hinge loss:

min
w,b

�

2
kwk2 +

BX

i=1

⇠i

s.t. kAiwk � �⇠i � w>qi � b+ 1, 8i : yi = +1

kAiwk  ⇠i � w>qi � b � 1, 8i : yi = �1

0  ⇠.

(7)

Where we have used Pi = A>
i Ai. The constraints

for positive ellipsoids are not second order cone con-
straints.

2.2. Ellipsoid estimation

We model the ith bag, {xi1, . . . ,xini} with ni in-
stances, by the empirical mean and covariance of the
instances, given by

qi =
1

ni

niX

j=1

xij Pi =
1

ni � 1

niX

j=1

(xij�qij)(xij�qij)
>.

(8)
When the number of instances per bag ni is larger than
the dimensionality of the feature space d, the covari-
ance Pi is of full rank and strictly positive definite.
However, in many datasets ni < d, resulting in a low
rank Pi. This is usually the case in the test datasets
we consider. The average number of instances in a
bag is much lower than d, resulting in a semidefinite
covariance Pi.

The covariance matrix gives the shape of the ellipsoid.
To find the volume, we derive two types of scaling
factors for the covariance matrix under two di↵erent
distributional assumptions in the following sections.

2.3. Confidence regions

Under the assumption of approximately Gaussian dis-
tributed instances per bag we can use the following
fact. Recall that for a random variable x distributed
as a p dimensional Gaussian Np(µ,⌃), the quadratic
form (x � µ)>⌃�1(x � µ) is distributed as �2 with p
degrees of freedom. This implies that the ellipsoid

(x � µ)>⌃�1(x � µ) 6 �2
p(↵)

contains 1 � ↵ of the total probability mass.

For an ellipsoid (q,P) to cover 1 � ↵-percent of a p-
dimensional multivariate Gaussian distribution with a
covariance matrix ⌃ we set P = ⌃ ·F�1

�2
p
(1�↵), where

F�1
�2
p
(q) is the quantile function (inverse cdf) of �2

p at

quantile q. We can use this fact to scale the empirical
covariance matrix, estimated from the bag instances.
In the next section a more general scaling factor for
non Gaussian distributions is derived.

2.4. Probabilistic multiple instance learning

In this section we show that eMIL maximizes the mar-
gin between instances from any within bag data dis-
tribution with finite mean and covariance with high
probability, while enforcing the asymmetry inherent
to multiple instance learning. We use similar minimax
techniques to robust optimization approaches (Lanck-
riet et al., 2002; Shivaswamy et al., 2006), that are
based on a multivariate Chebyshev’s inequality (Bert-
simas & Popescu, 2001).

Assuming the instances in a bag are drawn from a
probability distribution with mean qi and covariance
⌃i, we want to find a hyperplane that maximises the
margin between instances from the two classes. Re-
member, that for instances in a negative bag we know
the label, for instances in a positive bag we only know
at least one instance is positive. We formalize this
with the following optimization problem:

min
w,b

�

2
kwk2 +

BX

i=1

⇠i

s.t. inf
xi⇠(qi,⌃i)

Pr
xi

[yi(hw,xii + b) � 1 � ⇠i] � 1 � ↵i, 8y�

sup
xi⇠(qi,⌃i)

Pr
xi

[yi(hw,xii + b)  1 � ⇠i] � ↵i, 8y+

0  ⇠,
(9)

where sup / inf
xi⇠(qi,⌃i) means supremum/infimum

over all distributions for xi having mean qi and co-
variance ⌃i. The constraints in Equation (9) di↵er for
instances from positive bags and instances for nega-
tive bags. For instances from negative bags we want
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the smallest (over all distributions with mean qi and
covariance ⌃i) probability of correct classification to
be higher than ↵i 2 (0, 1]. For small ↵i this gives
high worst-case probability of correct classification for
all instances in a negative bag. For instances from
positive bags the highest (again over all distributions
with mean qi and covariance ⌃i) probability of nega-
tive classification needs to be larger than ↵i, in other
words, there exists a distribution with negative clas-
sification higher than ↵i. This may seem counter-
intuitive at first, but recall that for a positive bag to
be classified correctly only one instance needs to be
classified correctly, i.e. many of the instances will be
classified negative. Here for small ↵i this gives low
negative classification probability.

We show that considering the worst case distribu-
tion with finite mean and covariance results in the
same constraints as making an assumption of ellip-
soidal bags.

Proposition 2. The optimization problem in Equa-
tion (9) is equivalent to eMIL (Equation (7)).

To prove Proposition 2 we use the following Lemmas:

Lemma 3.

sup
xi⇠(qi,⌃i)

Pr
xi

[yi(hw,xii + b)  1 � ⇠i] =
1

1 + d2
,with

(10)

d2 = inf
xi|yi(hw,xii+b)1�⇠i

(xi � qi)
>⌃�1

i (xi � qi).

(11)

Where xi is a random vector and the supremum is over
all distributions for xi with mean qi and covariance
matrix ⌃i.

Proof sketch. This can be shown by using the mul-
tivariate Chebyshev inequality from Lanckriet et al.
(2002) and setting S = {xi|yi(hw,xii + b)  1 � ⇠i}.
(See Appendix A in the supplementary file for a more
detailed proof.)

Lemma 4. For xi ⇠ (qi,⌃i):

inf
xi|yi(hw,xii+b)1�⇠i

(xi � qi)
>⌃�1

i (xi � qi)

=
max(0, yi(hw,qii + b) � 1 + ⇠i)2

w>⌃iw
.

(12)

Proof sketch. By considering the distance d to the hy-
perplane, we obtain the above result. This follows the
same logic as the proof in Lanckriet et al. (2002); Shiv-
aswamy et al. (2006), see Appendix A in the supple-
mentary file for a more detailed proof.

Proof of Proposition 2. Since the objective function in
both optimization problems are the same, it is su�-
cient to show that the constraints are equivalent.

For the probabilistic constraint of negative bags

inf
xi⇠(qi,⌃i)

Pr
xi

[yi(hw,xii + b) � 1 � ⇠i] � ↵i, (13)

we rewrite it as

sup
xi⇠(qi,⌃i)

Pr[yi(hw,xii + b)  1 � ⇠i]  1 � ↵i. (14)

Then we can use Lemma 3 to rewrite the constraints
as

1

1 + d2
 ↵i, 8i : yi = �1

1

1 + d2
� ↵i, 8i : yi = +1,

(15)

where d2 is defined as in Lemma (3).

Next we use Lemma 4 and rearrange the terms to fi-
nally get the constraints

� hw,qii � b � 1 � ⇠i + (↵i)
p
w>⌃iw, 8y�

hw,qii + b � 1 � ⇠i � (↵i)
p
w>⌃iw, 8y+,

(16)

where (↵i) =
q

1�↵i
↵i

Now, if Ai in Equation (7) is set to Ai = (↵i)⌃
1/2
i

the equivalence can be seen.

This shows that by considering the worst case distri-
bution (not necessarily Gaussian) with finite mean and
covariance scales the ellipsoid by a factor (↵i)2.

2.5. Relation to robust classification

In robust classification, the goal is to find a classifier,
that is robust to random perturbations in the feature
space (Ben-Tal et al., 2009). If we assume an ellip-
soidal uncertainty set Ui = {ui : u>

i Piui  1}ni=1, and
seek to find a maximum-margin classifier, we get the
formulation of a robust SVM (Sra et al., 2011):

min
w,b,⇠

1

2
kwk2 + C ·

NX

i=1

⇠i

s.t. yi(w
Tqi + b) � 1 � ⇠i + kP1/2

i wk
0  ⇠i 8⇠i.

(17)

The di↵erence to eMIL (Equation (7)) is the fact that

kP1/2
i wk is not multiplied with the label yi. This leads

to a hyperplane that separates ellipsoids, whereas in
eMIL the positive ellipsoids can overlap the hyper-
plane. See Figure 2(b) for an illustration.
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(a) Maximum margin hy-

perplane for eMIL.
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(b) Maximum margin hy-

perplane for robust SVM.

Figure 2. Two negative (red) and two positive (green) el-

lipsoids with separating hyperplane and margin, notice the

di↵erent hyperplane and margin for eMIL (a) and robust

SVM (b).

2.6. Other MIL approaches

The MIL setting is very natural in many applications
such as text classification (Andrews et al., 2002), im-
age retrieval (Gehler & Chapelle, 2007) and object
detection (Viola et al., 2006). For example, content
based image retrieval represents an image as a bag
containing image patches (examples xij) and for a
particular query, one is interested in returning images
(bags {xi1, . . . ,xini}) that contain the object, instead
of solving the more complex problem of labeling every
patch in the image.

Unfortunately, due to the weak labeling, it is unclear
during training time of MIL methods how to allocate
the positive label. Since any number of examples in
a positive bag may be positive, one would naively
have to look at all possible labelings that includes
at least one positive label. For learning a classifier,
the bag label is traditionally inferred as the max over
the classification of all instances in the respective bag:
yi = sgnmaxni

j=1(hw,xiji + b) (Andrews et al., 2002).
This results in a non-convex optimization problem for
finding a maximum-margin hyperplane for classifica-
tion due to the negative max function not being con-
vex. It also results in potentially expensive computa-
tions which involve optimising a combinatorial prob-
lem. Recently, there has been several proposals of
making some assumptions about the structure of the
bag such as using Markov random fields (Warrell &
Torr, 2011) and low dimensional manifolds (Babenko
et al., 2011).

In Section 4, we compare our method to the follow-
ing algorithms for MIL: Two traditional approaches
to solve the MIL problem, the earliest one being the
method of axis-parallel rectangles (APR) (Dietterich

Algorithm 1 eMIL: Sequential SOCP

Initialise (w0, b0) according to Equation (18)
while `(wk, bk) � `(wk+1, bk+1) > ✏ do
Find the optimal solution (wk+1, bk+1) of Equa-
tion (22), given (wk, bk).

end while

et al., 1997), that was specifically designed for the
MUSK1 and MUSK2 datasets and an extension of
the diverse-density algorithm (Maron & Lozano-Pérez,
1998), EMDD, using Expectation-Maximization to
find a positive witness (Zhang et al., 2002). We also
compare to two extensions of a support vector machine
mi-SVM (maximizing instance margin) and MI-SVM
(maximizing bag margin), that lead to mixed-integer
programs (Andrews et al., 2002); deterministic an-
nealing methods to solve mi-SVM (AL-SVM) and MI-
SVM (AW-SVM) (Gehler & Chapelle, 2007); a convex
semi definite programming to the maximum instance
margin problem (SDP) (Guo, 2009); MICA, an algo-
rithm that uses convex combinations of positive bag
instances (Mangasarian & Wild, 2008); and a recent
approach developing a Gaussian process by building
bag likelihood models from the GP latent variables
(GPMIL) (Kim & la Torre, 2010).

3. Solving eMIL

3.1. Di↵erence of Convex Functions

We propose two approaches to optimize the result-
ing non-convex optimization problem (6). We derive
a concave convex procedure (CCCP) in the following
subsection, and a quasi-Newton approach (L-BFGS)
in Section 3.3. While CCCP gives consistently lower
optimal values on all the datasets that we tried, the
gradient based method is usually much faster, espe-
cially in very high dimensional problems. However, the
lower objective value typically also does not translate
into significant improvements on test accuracy. For
both approaches, we initialize by setting

w0, b0 = argmin
w,b

BX

i=1

max(0, 1�yi(w
>qi+b))+

�

2
kwk2,

(18)
which is the maximum-margin hyperplane that sepa-
rates the means of the bags. This can be seen as a first
order approximation of the within-bag distribution.

3.2. Solving eMIL with CCCP

We can express the objective function (6) as a di↵er-
ence of convex functions and use CCCP to solve it,
by solving a series of convex programs. See Yuille &
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Rangarajan (2003) for the introduction of the CCCP,
Sriperumbudur & Lanckriet (2009) for its convergence
proof, and Le Thi & Pham Dinh (2005) for an overview
on di↵erence of convex functions algorithm. The solu-
tion of eMIL with CCCP is shown in Algorithm 1.

The decomposition of (6) into the di↵erence of two
convex functions g(w, b), h(w, b) is as follows:

min
w,b

X

y�

max (0, 1 + f(Pi;qi))

+
X

y+

max (0,�1 + f(Pi;qi)) +
�

2
kwk2 (19)

�
X

y+

(�1 + f(Pi;qi)) , (20)

where the first three lines (Equation (19)) corre-
spond to g(w, b) and the last line (Equation (20)) to
�h(w, b). Given the decomposition, CCCP proceeds
by linearizing the concave part �h(x, b) atwk, bk, solv-
ing the resulting convex optimization problem Equa-
tion (21), obtaining the optimal value wk+1, bk+1

and repeating until convergence. The linearisation
of �h(x, b) (Equation (20)) at wk, bk is given by:
�hw, @h(wk, bk)i. By taking the sum over the posi-
tive examples out of the inner product we arrive at:

min
w,b

X

y�

max (0, 1 + f(Pi;qi))

+
X

y+

max (0,�1 + f(Pi;qi)) +
�

2
kwk2

�
X

y+

0

@
*
w,

Piwkq
w>

k Piwk

+ qi

+
+ b

1

A .

(21)

By introducing slack variables ⇠, using Pi = A>
i Ai

and finally converting the remaining objective function
into second order cone constraint, we can now rewrite
Equation (21) to get the equivalent (in terms of opti-
mal solution (w, b)) constrained optimisation problem
Equation (22), which is a second order cone program
(SOCP).

min
✓,w,b,⇠

✓

s.t.

�����

 
�q
�
2w

!�����  �� + 1

kAiwk +w>qi + b  ⇠i � 1, 8i : yi = �1

kAiwk +w>qi + b  ⇠i + 1, 8i : yi = +1

0  ⇠.
(22)

Where � is just a placeholder for

1

2

2

4
1�

X

y+

 *
w,

Piwkp
w

>
k Piwk

+ qi

+
+ b

!
+

BX

i=1

⇠i � ✓

3

5 .

See Appendix B in the supplementary file for details.

3.3. Solving eMIL with BFGS

Another way of solving eMIL is to find a local min-
imum with a gradient based method. We use the
quasi-Newton method L-BFGS (Byrd et al., 1995).
To get a gradient of eMIL we use a smoothed ver-
sion of the hinge-loss similar to (Chapelle, 2007;
Wang et al., 2008), which has the following form
`�(Pi;qi, yi,w, b) =
8
><

>:

(1�yi·f(Pi;qi))
2

2� if 1 � � < yi · f(Pi;qi)  1

1 � yi · f(Pi;qi) � �
2 if yi · f(Pi;qi)  1 � �

0 if yi · f(Pi;qi) > 1,

where we choose an appropriately small �. The gra-
dient is shown in Appendix D in the supplementary
file.

4. Benchmark datasets

We compare the performance of eMIL on the following
datasets: The MUSK1 and MUSK2 datasets described
in (Dietterich et al., 1997), three image annotation
datasets (Elephant, Fox, Tiger) introduced in (An-
drews et al., 2002) and 7 splits of the TREC9 dataset
(TST1, TST2, TST3, TST4, TST7, TST9 and TST10)
also described in (Andrews et al., 2002). The TREC9
datasets are extremely high-dimensional and sparse,
having 66000 to 67000 features of which only a maxi-
mum of 30 are non-zero per instance. On average the
MUSK1 and MUSK2 datasets contain approximately
6 and 60 instances per bag respectively. The average
bag sizes for the image annotation and TREC9 data
are 7 and 8 respectively. We minimize the regularized
empirical risk function, Equation (6) using L-BFGS
(Section 3.3).1 To avoid numerical problems, when
the ellipsoids are low rank we add a tiny positive con-
stant to the diagonal of Pi. This preserves the shape
of the ellipsoid and makes Pi positive definite. We
also experimented with di↵erent scaling factors (see
Section 2.3 and Section 2.4), but could not generally
improve test accuracy compared to simply using the
estimated covariance matrix. By setting (↵i) = 1 we
implicitly use ↵i = 0.5 for all bags.

To be able to compare the performance of our method
with previous methods we follow (Andrews et al.,

1
eMIL is available at http://bioweb.me/emil

http://bioweb.me/emil
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Table 1. Classification accuracy on the MUSK datasets (top block), image annotation (middle block), and TREC9 data.

See Section 2.6 for description of previous approaches. Performance of those were obtained from the respective papers.

Dataset eMIL APR EMDD MI-SVM mi-SVM MICA AL-SVM AW-SVM SDP GPMIL

Musk 1 84.5 92.4 84.8 77.9 87.4 84.4 85.7 85.7 69.5 89.5
Musk 2 86.0 89.2 84.9 84.3 83.6 90.5 86.2 83.8 61.3 87.3

Tiger 88.8 - 72.1 84.0 78.4 82.0 78.5 83.0 73.6 87.4
Elephant 84.0 - 78.3 81.4 82.2 82.5 79.5 82.0 74.8 83.8
Fox 58.3 - 56.1 57.8 58.2 62.0 63.5 63.5 56.8 65.8

TST1 95.9 - 85.8 93.9 93.6 - - - 92.7 94.4
TST2 79.2 - 84.0 84.5 78.2 - - - 75.1 85.3
TST3 86.8 - 69.0 82.2 87.0 - - - 74.3 86.1
TST4 84.0 - 80.5 82.4 82.8 - - - 77.7 85.3
TST7 80.4 - 75.4 78.0 81.3 - - - 72.5 80.3
TST9 69.0 - 65.5 60.2 67.5 - - - 59.9 70.8
TST10 83.4 - 78.5 79.5 79.6 - - - 74.4 80.4

2002) and employ the following procedure on all of the
datasets: We use 10-fold cross-validation and search
coarsely for an optimal regularization parameter �.
This procedure is repeated 10 times on random per-
mutations of the data and the results are averaged.

4.1. Feature space corresponding to kernels

For the MUSK-datasets we use a Gaussian kernel with
� = 10�6. Since we optimise eMIL in the primal,
we use kernel PCA to project the infinite dimensional
feature vector to a lower-dimensional subspace. For
MUSK2 we additionally restrict the number of basis
vectors to 2500 to save memory.

To be able to optimise in the primal, we explicitly
compute a finite dimensional representation of the fea-
tures corresponding to the kernel. Following Zien et al.
(2007), we use kernel PCA (Schölkopf & Smola, 2002)
to find a d dimensional representation of the data from
the kernel k(xi,xj). Since the representer theorem en-
sures that the optimal solution w lies in a finite dimen-
sional subspace, we first find a basis for this subspace
and then represent the instances in terms of this basis.

The basis needs to satisfy two criteria: (1) each ba-
sis vector has to be expressed in terms of the feature
maps, and (2) the basis vectors should be orthonor-
mal. Hence for a kernel matrix K, we need to find a
set of coe�cients in a matrix A such that A>KA = I.
One way to do so is to compute the eigenvalue decom-
position of K = V⇤V> and set A = V⇤� 1

2 .

4.2. Results

On the musk datasets (Table 1, top) eMIL shows
comparable performance to the methods motivated by

finding a witness instance for positive bags (MI-SVM,
MICA, AL-SVM) and the instance level maximum
margin methods (mi-SVM, AW-SVM). The good ac-
curacy of APR on the musk datasets can be explained
by the fact that the hypothesis class of axis-parallel
rectangles was specifically developed for this particu-
lar dataset. For the image annotation datasets (Ta-
ble 1, middle) eMIL has the best accuracy on the tiger
and elephant dataset and beats the MIL-SVM meth-
ods on the Fox dataset. Our method achieves highest
accuracy for some of the TREC9 datasets (Table 1,
bottom), and comparable accuracy to the best method
(GPMIL or mi-SVM) on all the TREC9 datasets,
apart from TST2.

5. Defective wheel classification

In this section we apply eMIL to a real world MIL
problem: Detecting defective wheels of freight trains
from multiple dynamic vertical wheel force measure-
ments. Late or undetected wheel defects on railway
vehicles result in increased infrastructure maintenance
due to damage of the railway infrastructure, like track
systems or civil engineering works, and reduced avail-
ability of the vehicle pool, maintenance compounds
and infrastructure. Most importantly, wheel defects
are the major source of noise and vibration emissions
of rail tra�c. This makes the automatic, reliable and
timely detection of wheel defects an essential part of
any railway infrastructure safety monitoring system.

For detecting wheel defects, we are given eight mea-
surements per wheel, obtained by eight sensors in-
stalled on the tracks as the train runs over the mea-
surement site in full operational speed. A defect only
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Table 2. Classification accuracy on the wheel defect

dataset. Rank gives the average rank. If two methods are

equal, they both get the same rank. See text for details.

Acc. eMIL ALSVM AWSVM ALPSVM SVM

Avg. 0.70 0.64 0.68 0.63 0.67

Std. dev. 0.05 0.08 0.06 0.07 0.07

Rank 1.5 3.5 2. 3.5 2.5

impacts a measurement if it hits the part of the track
where the sensor is installed directly. This results in
eight measurements per wheel, with usually one mea-
surement a↵ected by a defective wheel. By considering
all measurements from di↵erent sensors for the same
wheel as a bag a natural setting for MIL is obtained.
The labeled data was obtained by running a test train
with a known configuration of wheel defects, resulting
in 100 positive and negative bags.

5.1. Experimental protocol

Each measurement (instance) consists of a time series
of the vertical wheel force. We use the Global Aligne-
ment (GA) kernel for time series, described in Cuturi
et al. (2007) and Cuturi (2011). The GA kernel can
be seen as a generalization of dynamic time warping
(DTW) with a soft-max over all the alignments. To
optimise eMIL in the primal we again project the fea-
tures corresponding to this kernel to a lower dimen-
sional subspace (see Section 4.1).

We compare our algorithm (eMIL) to the three de-
terministic annealing methods described in Gehler &
Chapelle (2007) in Table 2. We chose these methods
because they solve the mi-SVM and MI-SVM formu-
lations of MIL and our method could be seen as a
generalization of the maximum bag margin method
MI-SVM. Furthermore, an implementation was read-
ily available. ALP-SVM is a balancing extension of
AL-SVM, it needs to know an estimate of the frac-
tion of positive points in a positive bag p? a priori.
For ALP-SVM, we provide extra information by set-
ting p? to 1/8 because we expect one sensor on aver-
age to see a defect. In addition, we compare a baseline
method using a standard Support Vector Machine (de-
noted “SVM”). To convert from bag labels to instance
labels, we set all instance labels to the bag label.

The reported accuracy is averaged over 10 random
permutations of the following two stage evaluation
scheme: Half of the data is split of for model selection
and half for evaluation. On the first half of the data
the optimal parameter for regularization is searched
over � 2 10[�2,...,�5]. This is done with estimating
test error with 5-fold cross validation for all values of

� and the � with lowest test error is kept. This � is
then used to train the classifier on the full first half of
the dataset and test error is computed on the second
evaluation half of the dataset. If multiple parameter
values give the same test accuracy, the one closest to
the average is kept for training.

5.2. Results on the wheel data

From Table 2 we see that eMIL has the highest average
accuracy on the test set. However, due to the large
variation between the di↵erent splits of the data, the
standard deviation is large. We also compared the
ranks of the methods for each split, with the method
with highest accuracy obtaining rank 1, and the lowest
rank 5. We see in Table 2 that eMIL has average rank
1.5, which is the best among all considered methods.
Interestingly, the naive SVM approach performs well.

6. Discussion

Motivated by the real world application of detecting
wheel defects from multiple dynamic force measure-
ments, we derive an ellipsoidal algorithm to solve MIL,
resulting in a classifier that optimises a class condi-
tional distance between an ellipsoid and a hyperplane.
We show that representing bags as ellipsoids amounts
to finding a robust solution. Using only the assump-
tion that the instances are samples from a distribution
with finite mean and covariance, we derive an appro-
priate scaling factor for eMIL. We propose two ap-
proaches to solve the optimization problem: a CCCP
approach which results in a sequential SOCP, and a
quasi-Newton method based on L-BFGS.

Our algorithm results in state of the art performance
on benchmark MIL datasets, demonstrating the e↵ec-
tiveness of the method. For classifying defective wheels
with multiple instance time series data eMIL con-
sistently outperforms AL-SVM, AW-SVM and ALP-
SVM, which are recent improvements to SVM type
MIL approaches. We are currently working with our
collaborators in the rail industry to test this approach
in the safety monitoring system.
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