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Abstract
Given samples from two densities p and q, den-
sity ratio estimation (DRE) is the problem of es-
timating the ratio p/q. In this paper, we for-
mally relate DRE and class-probability estima-
tion (CPE), and theoretically justify the use of
existing losses from one problem for the other.
In the CPE to DRE direction, we show that es-
sentially any CPE loss (e.g. logistic, exponential)
minimises a Bregman divergence to the true den-
sity ratio, and thus can be used for DRE. We also
show how different losses focus on accurately
modelling different ranges of the density ratio,
and use this to design new CPE losses for DRE.
In the DRE to CPE direction, we argue that the
least squares importance fitting method has po-
tential use for bipartite ranking of instances with
maximal accuracy at the head of the ranking. Our
analysis relies on a novel Bregman divergence
identity that may be of independent interest.

1. Density ratio estimation
Suppose we have samples from two densities p and q over
an instance space X. Density ratio estimation (DRE) is con-
cerned with estimating from these samples the density ratio
r : x 7→ p(x)/q(x). A canonical application of these esti-
mates is in the covariate shift problem (Shimodaira, 2000;
Sugiyama & Kawanabe, 2012), where one’s training and
test samples have different marginal distributions over in-
stances: the density ratio between these distributions can
be used to re-weight training instances so as to correctly
adapt to the test distribution. Other applications of these
estimates include outlier detection, independent component
analysis, and hypothesis testing (Sugiyama et al., 2012b).

A conceptually simple solution to DRE is to compute ker-
nel density estimates p̂ and q̂, and then compute the ra-
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tio p̂/q̂ (Shimodaira, 2000; Sugiyama & Müller, 2005).
This suffers from the curse of dimensionality, which has
motivated discriminative approaches to the problem, start-
ing with the seminal mean matching work of Huang et al.
(2007). Mean matching is however limited by the lack of
a principled model selection scheme; two popular subse-
quent approaches affording model selection are KL impor-
tance estimation (KLIEP) (Sugiyama et al., 2008), and least
squares importance fitting (LSIF) (Kanamori et al., 2009).

In this paper, we formally relate the DRE and class-
probability estimation (CPE) problems, and theoretically
justify the use of existing losses from one problem for
the other. In the CPE to DRE direction, we first ob-
serve (Lemma 1) that KLIEP and LSIF both employ losses
belonging to the proper composite family, which are the
fundamental losses of CPE (Buja et al., 2005; Reid &
Williamson, 2010). Motivated by this, we show that essen-
tially any CPE loss (e.g. logistic, exponential) minimises
a Bregman divergence to the true density ratio (Proposition
3), and thus is suitable for DRE; analyse how different CPE
losses focus on accurately modelling different ranges of the
density ratio (Lemma 4); and use this to design new CPE
losses for DRE (§6.2). In the DRE to CPE direction, we
argue that LSIF has potential use in bipartite ranking prob-
lems where one desires maximal accuracy at the head of
the ranking (§7). Our analysis relies on a novel Bregman
identity (Lemma 2) that may be of independent interest.

The basic link between DRE and CPE is not new. Specific
CPE methods such as logistic regression have been previ-
ously employed for covariate shift adaptation (Bickel et al.,
2009, Section 7); the link between the problems has been
exploited for semiparametric density estimation, where the
form of the density ratio is known (Qin, 1998; Cheng &
Chu, 2004); and a variant of LSIF has been applied to the
task of class-probability estimation (Sugiyama et al., 2010;
Sugiyama, 2010). However, on the DRE side, we are not
aware of a formal analysis of the quality of the density ratio
estimates produced by a general CPE method in the sense
of Proposition 3. On the CPE side, we are unaware of any
analysis of the tradeoffs implicit in the LSIF loss, nor any
discussion of its potential value for ranking problems.
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2. Background and notation
We review some background material and fix notation.

2.1. Learning from binary labels

Denote by D a distribution over X × {±1}, with random
variables (X,Y) ∼ D. Any D may be decomposed into
class-conditionals (P,Q) = (P(X | Y = 1),P(X | Y =
−1)) and base rate π = P(Y = 1), or into marginal M =
P(X) and class-probability function η : x 7→ P(Y = 1 |
X = x). We will write D = (P,Q, π) or D = (M,η). The
densities of P,Q are assumed to exist and denoted by p, q.

A loss is any ` : {±1} × R→ R; we interchangeably write
`(y, ·) as `y(·). A scorer is any s : X → R. The `-risk for
a scorer s wrt D is L(s;D, `) ·= E(X,Y)∼D [`(Y, s(X))]; the

Bayes-optimal scorer is s∗ ·= argmins L(s;D, `).

2.2. Class-probability estimation

Class-probability estimation (CPE) is concerned with in-
ferring η. This may be achieved via a suitable loss func-
tion. A loss ` is strictly proper composite with (invert-
ible) link function Ψ: [0, 1] → R if the Bayes-optimal
scorer for the `-risk is s∗ = Ψ ◦ η (Buja et al., 2005; Reid
& Williamson, 2010). Examples include the logistic loss
`(y, v) = log(1 + e−yv) with Ψ(p) = log p/(1 − p), ex-
ponential loss `(y, v) = e−yv (as in AdaBoost) and square
hinge loss `(y, v) = max(0, 1 − yv)2 (as in L2-SVMs).
If ` is differentiable, it is strictly proper composite with in-
vertible link Ψ iff (Reid & Williamson, 2010, Corollary 12)

Ψ−1(v) =
(
1− `′1(v)/`′−1(v)

)−1
. (1)

Given a strictly proper composite `, we call λ ·= ` ◦
Ψ: [0, 1] → R the underlying proper loss for `. The nega-
tive conditional Bayes risk f : [0, 1]→ R of ` is then

f(u) ·= −u · λ1(u)− (1− u) · λ−1(u). (2)

Given a scorer swith low `-risk, we can regard η̂ ·= Ψ−1◦s
to be an estimate of η. The quality of this estimate can be
quantified: the regret or excess risk of a scorer s over the
Bayes-optimal is (Reid & Williamson, 2010, Corollary 9,
Corollary 13)

reg(s;D, `) ·= L(s;D, `)− L(Ψ ◦ η;D, `)

= EX∼M [Bf (η(X), η̂(X))] (3)

= EX∼M

[∫ 1

0

w(c) · regc(η(X), η̂(X)) dc

]
,

(4)

where Bf is a Bregman divergence with generator f , the
weight function w = f ′′, and regc(η, η̂) ·= |η − c| · J(η −

c) · (η̂ − c) < 0K the cost-sensitive pointwise regret. Intu-
itively, Equation 4 says that a loss focusses on accurately
modelling the range of η values for which w(·) is large.
For example, logistic loss has as f the negative Shannon
entropy, and so seeks an η̂ with minimal KL-divergence to
η; further, it has weight function w(c) = (c · (1− c))−1.

2.3. Covariate shift adaptation

In covariate shift problems (Sugiyama & Kawanabe, 2012),
we have train and test distributions DTr and DTe with
ηTr = ηTe, but MTr 6= MTe. Our goal remains to min-
imise L(s;DTe, `). This is a canonical application for DRE
because the importance weighting identity

L(s;DTe, `) = EX∼M
[
r(X) · EY∼η(X) [`(Y, s(X))]

]
(5)

for density ratio r = mTe/mTr of the corresponding
marginal densities implies that if we estimate r, we can
simply re-weight training instances accordingly so as to
adapt to the test distribution (Shimodaira, 2000). (On finite
samples, importance weighting may actually bring little or
negative improvement, and thus covariate shift adaptation
may require more than simply estimating r (Cortes et al.,
2010; Reddi et al., 2015; Swaminathan & Joachims, 2015);
this is however beyond the scope of the present paper.)

3. Linking density ratios to class-probabilities
Suppose we wish to estimate a density ratio r = p/q, given
samples from the respective densities. One can view these
samples as arising from a distribution D over binary labels,
where p and q are the densities of the class-conditional dis-
tributions, and π is the relative frequency of samples from
the densities. (For the covariate shift problem of §2.3, such
a D would encode the discrimination between training and
testing instances with p = mTe and q = mTr.)

The above suggests that methods for learning from binary
labels could be used to estimate r. Indeed, as in Bickel
et al. (2009); Smola (2010), Bayes’ rule implies:

(∀x ∈ X)
η(x)

1− η(x)
=
p(x)

q(x)
· π

1− π
, (6)

where P(X = x) cancels for both terms in the LHS; thus,

(∀x ∈ X) r(x) ·= p(x)

q(x)
= Ψdr (η(x)) , (7)

for the link function

Ψdr(u) ·= 1− π
π
· u

1− u
. (8)

Intuitively, this elementary fact suggests one should be able
to uses CPE losses to perform DRE, and vice-versa. The
rest of the paper makes this intuition precise. We devote
the next few sections to the usage of CPE losses for DRE,
and then return to the usage of DRE losses for CPE in §7.
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4. DRE via CPE loss minimisation
We now show how Equation 7 may be used to re-interpret
existing DRE approaches as implicitly performing CPE, as
well as motivate performing DRE via a general CPE loss.
In what follows, we assume that π = 1/2 1, so that

Ψdr(u) =
u

1− u
, (9)

with Ψ−1
dr (v) = v/(1 + v) for v ≥ 0.

4.1. Estimating density ratios with the Ψdr link

To estimate r, Equation 7 suggests that we minimise the
`-risk for proper composite ` with link Ψdr, as the corre-
sponding Bayes-optimal scorer is exactly s∗ = Ψdr◦η = r.
Given a scorer s with low `-risk, we can then treat r̂ = s
as an estimate of the density ratio. We now see how two
existing approaches to DRE do precisely this.

The KLIEP loss. Consider the loss

`−1(v) = a · v and `1(v) = − log v (10)

for a > 0, with corresponding risk

L(s;D, `) = EX∼P [− log s(X)] + a · EX∼Q [s(X)] (11)

defined for any s ∈ S ⊆ RX
+. For suitable a, finding

mins∈S L(s;D, `) is equivalent to the constrained problem

min
s∈S

EX∼P [− log s(X)] : EX∼Q [s(X)] = 1,

which is exactly the objective of the KLIEP method of
Sugiyama et al. (2008); we thus call the loss of Equation
10 the KLIEP loss. The unconstrained objective was also
considered in du Plessis & Sugiyama (2012).

The LSIF loss. Consider the loss

`−1(v) = 1/2 · v2 and `1(v) = −v, (12)

with corresponding risk

L(s;D, `) = EX∼P [−s(X)] + EX∼Q
[
1/2 · s(X)2

]
. (13)

The problem mins L(s;D, `) is exactly that considered by
the LSIF method of Kanamori et al. (2009); we thus call the
loss of Equation 12 the LSIF loss. One appealing property
of the LSIF loss is that when working with linear scorers
s : x 7→ 〈w, x〉, the risk has a closed form minimiser

w∗ =
(
EX∼Q

[
XXT

])−1 · EX∼P [X] . (14)

To analyse the above, consider the family of power losses
suggested in Sugiyama et al. (2012a, Section 3.4),

`−1(v) =
v1+α − 1

1 + α
and `1(v) =

1− vα

α
(15)

1Appendix A covers the more cumbersome case π 6= 1/2.

for α ∈ (0, 1]. As α → 0+, we get the (translated) KLIEP
loss for a = 1; for α = 1, we get the (translated) LSIF
loss. It is easy to check that all these losses are strictly
proper composite, with link Ψdr.
Lemma 1. For any α ∈ (0, 1], the power loss of Equation
15 is strictly proper composite with link Ψdr. At the limit
α→ 0+, the KLIEP loss with parameter a > 0 of Equation
10 is also strictly proper composite with link a−1 ·Ψdr.

Proof. Since ` is differentiable, with

`′−1(v) = vα and `′1(v) = −vα−1,

by Equation 1 it is strictly proper composite with link

Ψ−1(v) =

(
1 +

1

v

)−1

= Ψ−1
dr (v).

A similar argument applies to the general KLIEP loss.

The above interpretation of the KLIEP and LSIF losses in
terms of CPE evinces why they are suitable for DRE: the
optimal scorer for each is exactly the true density ratio.

4.2. Estimating density ratios with any link

While the previous section focussed on DRE using the link
Ψdr, nothing prohibits the use of an arbitrary link Ψ. Sup-
pose we have a proper composite ` with link Ψ, and Bayes-
optimal scorer s∗ = Ψ ◦ η. Then, by Equation 7,

(∀x ∈ X) r(x) =
1− π
π
· Ψ−1(s∗(x))

1−Ψ−1(s∗(x))
. (16)

Given an arbitrary scorer swith low `-risk, it is natural then
to use the density ratio estimator

r̂(x) ·= 1− π
π
· η̂(x)

1− η̂(x)
, (17)

recalling that η̂ = Ψ−1 ◦ s. For example, with the lo-
gistic loss, for which Ψ−1(v) = (1 + e−v)−1, we have
r̂(x) = es(x) when π = 1/2. Precisely such an estimate
was previously considered in Bickel et al. (2009, Section
7) in the context of covariate shift adaptation.

The above appears to definitively establish the suitability of
CPE losses for DRE. However, while Equation 16 justifies
the CPE loss minimisation approach asymptotically, what
can be guaranteed about the quality of an imperfect esti-
mate r̂ as in Equation 17? This issue is more subtle, and is
the subject of our next section.

5. A Bregman minimisation view of DRE
Recall from Equation 3 that proper composite loss minimi-
sation is equivalent to minimising a specific Bregman di-
vergence between η̂ and η. Since r and η are related by
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a monotone transform (Equation 7), in applications where
only the ordering of the density ratio is important, this fact
would suffice as guarantee of the quality of r̂. In covari-
ate shift modelling, however, one requires a good estimate
of r, rather than some monotone transformation of r (other
than multipication by a positive scalar). For this applica-
tion, Equation 3 by itself does not suffice; further, prima
facie, one might be concerned that errors in the estimate
η̂ are magnified uncontrollably when passed through the
transform u/(1− u) to construct r̂.

Fortunately, we can show that minimisation of (essentially)
any strictly proper composite ` results in a good r̂ in a pre-
cise sense: the procedure is equivalent to minimising a spe-
cific Bregman divergence of r̂ to the true r.

5.1. A novel Bregman identity

To quantify the quality of the density ratio estimates r̂, the
most natural way to proceed is to re-express Equation 3 in
terms of r rather than η. But how do we do this without
appealing to specific properties of f or Ψ? The answer is
provided by the following Bregman identity, which to our
knowledge is novel, and may be of independent interest.

Lemma 2. For any twice differentiable convex f : [0, 1]→
R with Bregman divergence Bf (·, ·),

(∀x, y ∈ [0,∞))Bf

(
x

1 + x
,

y

1 + y

)
=

1

1 + x
·Bf�(x, y),

where f� : [0,∞)→ R is given by

f� : z 7→ (1 + z) · f
(

z

1 + z

)
(18)

Proof. By (Reid & Williamson, 2009, Equation 12),

Bf (x, y) =

∫ x

y

(x− z) · f ′′(z) dz. (19)

Applying this to the LHS,

Bf

(
x

1 + x
,

y

1 + y

)
=

∫ x
1+x

y
1+y

(
x

1 + x
− z
)
· f ′′(z) dz.

Employing the substitution z = u
1+u , with dz = du

(1+u)2 ,

LHS =

∫ x

y

(
x

1 + x
− u

1 + u

)
· f ′′

(
u

1 + u

)
· 1

(1 + u)2
du

=

∫ x

y

x− u
(1 + x) · (1 + u)

· f ′′
(

u

1 + u

)
· 1

(1 + u)2
du

=
1

1 + x
·
∫ x

y

(x− u) · f ′′
(

u

1 + u

)
· 1

(1 + u)3
du

=
1

1 + x
·Bf�(x, y),

where the last line is since by definition of f�,

(f�)′(z) =
1

1 + z
· f ′
(

z

1 + z

)
+ f

(
z

1 + z

)
and

(f�)′′(z) = f ′′
(

z

1 + z

)
· 1

(1 + z)3
. (20)

Remark 1. One might think to generalise Lemma 2 using a
different change of variable in the integral above; however,
this in general will not yield another Bregman divergence.
Remark 2. f� is closely related to the perspective trans-
form f� : x 7→ x · f(1/x) of a convex function.
Remark 3. The somewhat awkward form of the arguments
in the LHS is to simplify the results in the next section.

5.2. Proper losses minimise a Bregman divergence to r

Using Lemma 2, we can establish that proper composite
loss minimisation is equivalent to minimising a Bregman
divergence to the true density ratio.
Proposition 3. Pick any strictly proper composite ` with
twice differentiable negative Bayes risk f . Then, for any
distribution D = (P,Q, 1/2) and scorer s : X→ R,

reg(s;D, `) = 1/2 · EX∼Q
[
Bf� (r(X), r̂(X))

]
,

for r = Ψdr ◦ η, r̂ = Ψdr ◦ η̂, and f� per Equation 18.

Proof. Letting R = 2 · reg(s;D, `), by Equation 3,

R = 2 · EX∼M [Bf (η(X), η̂(X))]

= EX∼P [Bf (η(X), η̂(X))] + EX∼Q [Bf (η(X), η̂(X))]

= EX∼Q [(1 + r(X)) ·Bf (η(X), η̂(X))] ,

where the last line is because EX∼P [g(X)] =
EX∼Q [r(X) · g(X)]. Now, expressing Lemma 2 as

(1 + x) ·Bf
(
Ψ−1

dr (a),Ψ−1
dr (b)

)
= Bf�(a, b),

and noting that by Equation 7, η = Ψ−1
dr ◦ r, the result

follows by picking a = r(X) and b = r̂(X).

Remark 4. See Appendix B for an alternate proof using
the connection of proper losses to f -divergences (Reid &
Williamson, 2011), and Appendix D for a discussion of
how the proper loss view sheds some light on existing inter-
pretations of KLIEP and LSIF in terms of f -divergences.
Remark 5. The expectation in Equation 3 is over the
marginal M , but above, it is over the class-conditional
Q. This is intuitive for covariate shift adaptation (§2.3):
here, we estimate the class-conditional density ratio for
D = (MTe,MTr, 1/2), and wish this to be accurate on av-
erage for the reweighed training instances i.e. on average
under the “negative” class-conditional MTr.
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Remark 6. The need for f ′′ to exist is why we used the
qualifier “essentially” when describing the result in §1.
Remark 7. See Appendix C for the simple, but slightly
more cumbersome generalisation to π 6= 1/2.

Proposition 3 has implicit precedent in three special cases:
Sugiyama et al. (2012a, Section 3) showed that logistic
regression, KLIEP and LSIF perform Bregman minimisa-
tion. Proposition 3 shows that this is simply a manifesta-
tion of the fact that they all use proper composite losses,
and broadly generalises the result to other `.

Proposition 3 has at least three useful implications. First,
it theoretically justifies the reduction of DRE to CPE, as
in e.g. Bickel et al. (2009). Second, it opens the door to
performing DRE using any other of the standard arsenal of
CPE losses (e.g. exponential, square hinge). Third, we can
leverage existing analyses for CPE to help us design suit-
able losses for a DRE task. This last point is important:
while Proposition 3 implies all proper composite losses are
“equally good” for DRE if we have sufficiently many sam-
ples and a rich function class, in practice neither of these
conditions is expected to hold. It is thus of interest to deter-
mine what tradeoffs are imposed by different losses. This
is studied in the next section.

6. Designing CPE losses for DRE
We now show that different CPE losses focus on modelling
different regions of the density ratio, as specified by an im-
plicit weight function whose form we provide. We then
discuss how to design CPE losses so as to employ a fixed
such weighting, and provide some new losses for DRE.

6.1. A weight function view of losses for DRE

Recall from Equation 4 that every proper composite ` has
an associated weight function w over cost ratios, so that w
specifies the tradeoffs in modelling η implied by a given
loss. We can similarly interpret each ` as focussing on dif-
ferent ranges of the density ratio r, as specified by a density
ratio weight function wDR(ρ) defined below.
Lemma 4. Pick any strictly proper composite ` with twice
differentiable f and weight function w. For any scorer s
and distribution D = (P,Q, 1/2),

reg(s;D, `) =
1

2
· EX∼Q

[∫ ∞
0

wDR(ρ) · regρ(r(X), r̂(X)) dρ

]
,

where r̂ is as per Equation 17, the density ratio weight
function wDR : [0,∞)→ R+ is

wDR(ρ) ·= 1

(1 + ρ)3
· w
(

ρ

1 + ρ

)
, (21)

and the pointwise regret around threshold ρ is

regρ(r, r̂)
·= |r − ρ| · J(r − ρ) · (r̂ − ρ) < 0K. (22)

Proof of Lemma 4. By Proposition 3 and Equation 19,

reg(s;D, `) =
1

2
· EX∼Q

[∫ ∞
0

(f�)′′(ρ) · regρ(r(X), r̂(X)) dρ

]
.

Defining wDR = (f�)′′ and applying Equation 20 (recall-
ing that w = f ′′), the result follows.

Thus, analogous to our intuition for estimating η, min-
imising a proper composite loss intuitively focusses on the
range of r values for which the corresponding wDR(·) is
large. The relationship between wDR and w (Equation 21)
features a non-obvious dependence on (1 + ρ)−3.

Table 1 summarises the weight functions over cost and den-
sity ratios for the DRE losses of §4.1, and for some stan-
dard proper composite losses. The latter are seen to place
more importance on accurate modelling of smaller density
ratios. The power family has a similar trend for α < 1,
but at α = 1 the LSIF loss has uniform weighting over all
possible values of the density ratio. Also of interest is that
only the LSIF and square losses have wDR(0) < +∞.

Which of these tradeoffs is the most suitable for DRE? A
uniform weighting can be motivated by appeal to general-
isation bounds: Cortes et al. (2008) showed that ensuring
small expected `2 distance between the true density ratio
r and one’s estimate r̂ yields guarantees on the excess er-
ror from using r̂ instead of r as weights to a kernel-based
learner. This speaks in favour of the LSIF loss, which from
Table 1 employs a uniform weighting. However, it is not
the only such loss with this property; we now see how one
can pair a range of link functions Ψ with a given weight
wDR, to generate new proper composite losses for DRE.

6.2. New proper composite losses for DRE

Suppose we fix a weight function wDR we believe suitable
for DRE, and desire a proper composite loss that employs
this weight. By definition, specifying wDR equally spec-
ifies the weight w over cost ratios. This, in turn, speci-
fies the negative Bayes-risk f for any loss employing this
weight (up to a linear term). Recall however that the nega-
tive Bayes-risk f only specifies the underlying proper loss
λ: we still have complete flexibility in choosing a link func-
tion Ψ to generate a proper composite loss.

To pick a suitable Ψ, one desiderata is that the resulting
composite loss should be convex for ease of optimisation.
For a fixed weight w, there is a simple canonical link func-
tion Ψcan that ensures this, being any link that satisfies

Ψ′can(u) ·= w(u). (23)

The corresponding proper composite loss is (Buja et al.,
2005, Section 16), (Reid & Williamson, 2010, Section 6.1)

`′−1(v) = Ψ−1
can(v) and `′1(v) = Ψ−1

can(v)− 1, (24)
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Loss `−1(v) `1(v) Ψ−1(v) w(c) wDR(ρ)

KLIEP v − log v
v

1 + v

1

c · (1− c)2

1

ρ

LSIF
1

2
v2 −v v

1 + v

1

(1− c)3
1

Powerα
v1+α − 1

1 + α

1− vα

α

v

1 + v

1

c1−α · (1− c)2+α
ρα−1

Square (1 + v)2 (1− v)2 2v − 1 8
1

(1 + ρ)3

Logistic log(1 + ev) log(1 + e−v)
1

1 + e−v
1

c · (1− c)
1

ρ · (1 + ρ)

Exponential ev e−v
1

1 + e−2v

1

2 · c3/2 · (1− c)3/2

1

ρ3/2

Table 1: Weights over cost and density ratios for existing DRE (top panel) and CPE (bottom panel) losses; derivations in Appendix E.

which is guaranteed to be convex, with derivative bounded
in [−1, 1] i.e. the loss is asymptotically (sub-)linear.

Using the above, we can generate new losses with weights
matching those of existing ones. Let us return to the weight
function w(c) = (1− c)−3 corresponding to wDR(ρ) = 1.
The canonical link found by solving Equation 23 is

Ψcan(u) = (1/2) · (1/(1− u)2 − 1), (25)

where we chose the constant of integration such that
Ψcan(u) ∈ [0,∞). Applying Equation 24 yields the new
“canonical LSIF” loss

`−1(v) = v −
√

2v + 1 and `1(v) = −
√

2v + 1 (26)

with the constraint v ≥ 0. Compared to the LSIF loss, this
loss also has a uniform weighting over density ratios, while
having derivatives bounded in [−1, 1].

More generally, recall that LSIF is a special case of the
power family (Equation 15) with α = 0. Sugiyama et al.
(2012a) observed that choosing α > 1 may yield a loss that
is more robust to outliers (at the possible expense of statisti-
cal efficiency), as per the origin of these losses in a different
context (Basu et al., 1998). However, the presented losses
are only convex for α ∈ (0, 1]. Similar to the above, one
can seek to retain the weightw of the power losses, but vary
the link to design a convex loss. The canonical link in this
case does not possess an analytic inverse, but we can still
design convex losses using other links. Appendix F shows
that for α = 2, Ψ−1(v) =

√
2v/(1 +

√
2v) yields

`−1(v) = (2
√

2/3) · v3/2 and `1(v) = −v for v ≥ 0. (27)

7. A new application of existing DRE losses
The preceding sections have established the virtue of us-
ing CPE losses to perform DRE. One might equally won-
der whether existing DRE losses are useful in tasks where
conventional CPE losses (e.g. logistic regression) are em-
ployed. We now explore one such potentially fruitful ap-
plication: the problem of bipartite ranking (Agarwal &

Niyogi, 2005). Here, we assume there is some D over in-
stances and binary labels, and our goal is to find a scorer
s : X→ R that ranks instances well, in the sense of possess-
ing a high area under the ROC curve (AUC). As the Bayes-
optimal scorer for the AUC is any monotone transform of η
(Clmenon et al., 2008), class-probability estimators such as
logistic regression may be successfully employed for this
task (Kotlowski et al., 2011; Agarwal, 2014).

In practice, one typically wishes to maximise accuracy at
the head of the ranked list. This is known as the “rank-
ing the best” (RTB) regime (Clémençon & Vayatis, 2007).
While standard bipartite ranking methods are of course vi-
able for RTB, one might hope to do better by explicitly tar-
geting instances x with η(x) ∼ 1. For example, Rudin
(2009) proposed a family of pairwise ranking risks that
explicitly penalise false-positive errors at the head of the
ranked list. This was shown in Ertekin & Rudin (2011) to
have the same minimiser as the p-classification loss,

`−1(v) = (1/p) · evp and `1(v) = e−v, (28)

where p � 0 emphasises accurate modelling of the head
of the list. In fact, from Equation 1, this loss is easily
checked to be strictly proper composite with weight func-
tion w(c) = (c1+α · (1− c)2−α)−1, where α = 1/(p+ 1)
(Menon & Williamson, 2014). Thus, setting p� 0 yields a
CPE loss whose underlying weight emphasises c ∼ 1, and
hence seeks to accurately model η values that are ∼ 1.

Interestingly, the weight functions of the KLIEP and LSIF
losses (Table 1) also place emphasis on c ∼ 1; indeed, the
KLIEP weight is the limit of the p-classification weight as
p→∞. (The two losses employ rather different link func-
tions, which explains their different forms.) This suggests
that these DRE losses may be useful for RTB problems; to
our knowledge, this application of these losses has not been
previously explored. One strong appeal of the LSIF loss in
particular is its closed form solution (Equation 14), which
affords highly efficient tuning and training; we believe this
motivates the use of this loss as a baseline for RTB tasks.
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8. Experimental results
We present experiments2 evincing three aspects of our anal-
ysis: first, that a loss’ weight function wDR(ρ) dictates the
range of density ratio values it focusses on; second, that
existing proper losses are viable for DRE in the context of
covariate shift adaptation; third; that the new application of
the LSIF loss to “ranking the best” problems holds promise.

8.1. Weight functions and resulting tradeoffs

We study the impact of weight functions using an example
of Vinciotti & Hand (2003) that was used in Buja et al.
(2005) to illustrate the role of weight functions in CPE.
Here, distribution D has marginal uniform over [0, 1]2, and

η : (x1, x2) 7→ (2/π) · cos−1(x1/
√
x2

1 + x2
2).

To estimate of the resulting density ratio of the class-
conditionals, we consider losses with “step” weights

w(c) = Jc ∈ [a, b]K + Jc /∈ [a, b]K · h−1, (29)

where a, b, h are tuning parameters. Evidently, the role of
a and b is to specify a region of cost ratio which is to be
accurately modelled. The role of the parameter h is to
determine how much emphasis is placed on this range of
cost ratios versus others. The corresponding weight over
density ratios similarly emphasises density ratio values in[

a
1−a ,

b
1−b

]
. We pick three losses from this family: we fix

h = 100, and choose a, b such that

a

1− a
= r∗ − 0.2 and

b

1− b
= r∗ + 0.2 (30)

for r∗ = {0.5, 1, 2}. The weights thus focus on ratios
around the corresponding r∗ value. The canonical proper
composite losses for these weights are easy but tedious to
derive; see Appendix G for details.

For each of the three losses above, we learn a linear model
to discriminate between np = 50, 000 samples S′ from
p and nq = 50, 000 samples S from q. For the result-
ing density ratio estimate r̂ and fixed ρ ∈ [0,∞), we
compute the expected pointwise regret around r(x) = ρ,
EX∼S̄

[
regρ(r(X), r̂(X))

]
, where regρ is as per Equation 22

and S̄ is a fresh sample of 10, 000 points drawn from q. We
plot these expected regrets for ρ ∈ {0.01, 0.02, . . . , 4.0}.

Figure 1 shows the regret curves for the three losses, la-
belled “Stepr∗” for the corresponding r∗ values. In each
case, there is a pronounced dip in the pointwise regret
curve around the corresponding r∗ value, indicating accu-
rate modelling of the density ratios in the surrounding re-
gion. This is in keeping with Lemma 4, and illustrates that
wDR(ρ) provides some intuition as to the range of the den-
sity ratio focussed on by a loss.

2Scripts available at first author’s webpage.
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Figure 1: Expected pointwise regret for losses with “step” weights
(Equation 29), for three choices of parameters as per Equation 30.

8.2. Proper losses for covariate shift adaptation

We next study the viability of DRE using proper composite
losses for covariate shift adaptation. Note that logistic loss
has been convincingly demonstrated to be viable in Bickel
et al. (2009), and we have seen that the KLIEP and LSIF
losses are in fact proper composite; our aim is simply to
confirm that other standard CPE losses are also viable.

We work with two datasets, both comprising nSrc labelled
samples S = {(xi, yi)} from a source domain, nTar unla-
belled samples S′ = {x′j}, nEval labelled samples S′′ =
{(x′′k , y′′k )} from a target domain. The marginal distribu-
tions for the two domains are assumed different. To correct
for the covariate shift, following Equation 5, we estimate
the density ratio r̂ from (S,S′) using different approaches,
and then solve a weighted least squares problem on S:

min
w

nSrc∑
i=1

r̂i · (yi − 〈w,Φ(xi)〉)2 +
λWLS

2
||w||2,

where r̂i denotes the density estimate for the ith training
example, and Φ denotes the feature mapping. Finally, we
evaluate prediction performance of this model on S′′.

The first dataset (poly) follows the example from Shi-
modaira (2000); Huang et al. (2007). Here, we have in-
stance space X = R, and conditional label distribution
Y | X = x ∼ N(−x − x3, 0.32). The marginals for the
source and target distributions are MSrc = N(0.5, 0.52)
and MTar = N(0, 0.32). We set nSrc = 200, nTar = 200,
and nEval = 2000. We use the empirical kernel mapping
Φ(x) = (exp(−||x− z||2))z∈S′ .

The second dataset (amazon) is the real-world Amazon re-
view data from Blitzer et al. (2007); we used the processed
data as provided by Chen et al. (2012). Here, we have in-
stance space X = R30000, being the bag of words repre-
sentation of Amazon reviews from four different product
domains. Each review is endowed with a binary label de-
noting the sentiment of the review. We train on nSrc = 3000
samples from the book domain, and test on nTar = 3000,
nEval = 2000 samples from the electronics domain. Our
feature mapping is the SVD projection to 100 dimensions
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(a) poly

Loss NMSE
Uniform 1.2723 ± 0.0302
KLIEP 0.6916 ± 0.0136
LSIF 0.7742 ± 0.0217
uLSIF 0.7038 ± 0.0102
Canonical LSIF 0.7969 ± 0.0288

Loss NMSE
Power2 1.1098 ± 0.0408
Logistic 0.6888 ± 0.0108
Square Hinge 0.6995 ± 0.0116
Square 0.6755 ± 0.0060
Exponential 0.6740 ± 0.0064

(b) amazon

Loss PD
Uniform 0.1582 ± 0.0018
KLIEP 0.1500 ± 0.0018
LSIF 0.1500 ± 0.0019
uLSIF 0.1370 ± 0.0024
Canonical LSIF 0.1517 ± 0.0018

Loss PD
Power2 0.1538 ± 0.0018
Logistic 0.1321 ± 0.0021
Square Hinge 0.1567 ± 0.0099
Square 0.1310 ± 0.0023
Exponential 0.2021 ± 0.0048

Table 2: Covariate shift results. For poly, we report normalised MSE (NMSE), viz. MSE normalised by variance of the targets. For
amazon, we report pairwise disagreement (PD), viz. 1− AUC. Reported are mean and standard error over 25 trials; lower is better.

(a) german

Loss AP PTop

Logistic 0.6087 ± 0.0192 0.0224 ± 0.0083
p-class 0.6121 ± 0.0185 0.0316 ± 0.0084
LSIF 0.6101 ± 0.0196 0.0364 ± 0.0114

(b) magic

Loss AP PTop

Logistic 0.8867 ± 0.0018 0.0018 ± 0.0005
p-class 0.8962 ± 0.0017 0.0031 ± 0.0017
LSIF 0.8996 ± 0.0014 0.0095 ± 0.0038

(c) news20-forsale

Loss AP PTop

Logistic 0.1487 ± 0.0041 0.0003 ± 0.0003
p-class 0.2817 ± 0.0113 0.0054 ± 0.0018
LSIF 0.2351 ± 0.0106 0.0101 ± 0.0014

Table 3: “Ranking the best” results. We report the average precision (AP), and fraction of positives ranked higher than the first negative
(PTop) (Agarwal, 2011). Reported are mean and standard error across 10 random splits; higher is better.

of a TFIDF mapping of the features.

To estimate the density ratio, we use the existing KLIEP
and LSIF losses; the “canonical LSIF” loss of Equation 26;
the Power2 loss of Equation 27; and the logistic, exponen-
tial, square, and square hinge losses. For each loss, we find

min
θ∈Θ

1

nSrc

∑
x∈S

`1(〈θ,Φ(x)〉) +
1

nTar

∑
x′∈S′

`1(〈θ,Φ(x′)〉) +
λDR

2
||θ||22,

where Θ is unconstrained for the “standard” CPE losses,
and Θ = {θ | (∀z ∈ S ∪ S′) 〈θ,Φ(z)〉 ≥ 0} otherwise.
For LSIF, we additionally used a heuristic suggested by
Kanamori et al. (2009): we use an unconstrained Θ but
post-hoc truncate scores at 0. We call this method “uLSIF”.

Table 2 summarises results for all losses over 25 random
draws of S and S′ on both datasets, for λWLS = 10−6 and
λDR = 10−4. Nearly all losses are seen to offer signifi-
cant improvement over assuming a uniform density ratio.
Square loss performs well in both tasks; as it has a closed-
form solution (like LSIF), it seems worth considering as a
simple baseline for covariate shift problems.

8.3. LSIF loss for “ranking the best”

Finally, we consider the viability of the computationally ef-
ficient LSIF loss for the “ranking the best” problem, com-
paring its performance to logistic regression and the p-
classification loss (Equation 28) for p = 4. We com-
pare these losses on several standard benchmark datasets
with binary labels. Each dataset was split in the ratio 2:1,
with all instances normalised to lie in the `2 ball. A reg-
ularised linear model trained to score instances, where for
each split, we performed 5-fold cross-validation to tune the
strength of regularisation from λ ∈ {2−20, 2−19, . . . , 215}.

Table 3 summarises the results over 10 random train–test
splits. (See Appendix H for results with more datasets and
performance measures.) We find that LSIF consistently
performs better than the logistic loss, in keeping with our
analysis of the weight function for this loss in §7. LSIF is
also competitive with the p-classification loss, sometimes
outperforming it on the challenging PTop measure. These
results, coupled with the loss’ closed form solution, suggest
it is worth considering as a baseline for RTB problems.

9. Conclusion
We have shown how existing approaches to discrimina-
tive DRE implictly employ CPE losses; how general CPE
losses may be employed for DRE, since minimising any
CPE loss equivalently minimises a Bregman divergence to
the true density ratio; and how a specific DRE loss, LSIF
(Kanamori et al., 2009), is worth considering for ranking
tasks where interest is in accuracy at the head of the list.

Possible directions for future study include more carefully
studying the application of LSIF to RTB problems, compar-
ing it to e.g. the recent approach of Li et al. (2014); study-
ing the effects of finite samples on CPE estimates for DRE;
and generalising Lemma 2 to show CPE can provably esti-
mate other useful quantities.
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Reddi, Sashank Jakkam, Póczos, Barnabás, and Smola,
Alexander J. Doubly robust covariate shift correction.
In Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence, January 25-30, 2015, Austin,
Texas, USA., pp. 2949–2955, 2015.

Reid, Mark D and Williamson, Robert C. Surrogate regret
bounds for proper losses. In International Conference on
Machine Learning (ICML), pp. 897–904. ACM, 2009.



Linking losses for density ratio and class-probability estimation

Reid, Mark D and Williamson, Robert C. Composite bi-
nary losses. Journal of Machine Learning Research, 11:
2387–2422, Dec 2010.

Reid, Mark D and Williamson, Robert C. Information, di-
vergence and risk for binary experiments. Journal of Ma-
chine Learning Research, 12:731–817, Mar 2011.

Rockafellar, R T. Convex Analysis. Princeton University
Press, 1972.

Rudin, Cynthia. The p-norm push: A simple convex rank-
ing algorithm that concentrates at the top of the list. Jour-
nal of Machine Learning Research, 10:2233–2271, Dec
2009.

Shimodaira, Hidetoshi. Improving predictive inference un-
der covariate shift by weighting the log-likelihood func-
tion. Journal of Statistical Planning and Inference, 90
(2):227 – 244, 2000. ISSN 0378-3758.

Smola, Alex. Real simple covariate shift correction.
http://blog.smola.org/post/4110255196/

real-simple-covariate-shift-correction ,
2010.

Sugiyama, Masashi. Superfast-trainable multi-class proba-
bilistic classifier by least-squares posterior fitting. IEICE
Transactions, 93-D(10):2690–2701, 2010.

Sugiyama, Masashi and Kawanabe, Motoaki. Machine
Learning in Non-Stationary Environments: Introduction
to Covariate Shift Adaptation. The MIT Press, 2012.

Sugiyama, Masashi and Müller, Klaus-Robert. Input-
dependent estimation of generalization error under co-
variate shift. Statistics & Risk Modeling, 23(4/2005):
249–279, April 2005.

Sugiyama, Masashi, Suzuki, Taiji, Nakajima, Shinichi,
Kashima, Hisashi, von Bünau, Paul, and Kawanabe, Mo-
toaki. Direct importance estimation for covariate shift
adaptation. Annals of the Institute of Statistical Mathe-
matics, 60(4):699–746, 2008. ISSN 0020-3157.

Sugiyama, Masashi, Takeuchi, Ichiro, Suzuki, Taiji,
Kanamori, Takafumi, Hachiya, Hirotaka, and
Okanohara, Daisuke. Conditional density estima-
tion via least-squares density ratio estimation. In
International Conference on Artificial Intelligence and
Statistics (AISTATS), 2010.

Sugiyama, Masashi, Suzuki, Taiji, and Kanamori, Taka-
fumi. Density-ratio matching under the Bregman diver-
gence: a unified framework of density-ratio estimation.
Annals of the Institute of Statistical Mathematics, 64(5):
1009–1044, 2012a. ISSN 0020-3157.

Sugiyama, Masashi, Suzuki, Taiji, and Kanamori, Taka-
fumi. Density Ratio Estimation in Machine Learning.
Cambridge University Press, New York, NY, USA, 1st
edition, 2012b.

Swaminathan, Adith and Joachims, Thorsten. The self-
normalized estimator for counterfactual learning. In
Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems 28, pp. 3213–3221. Curran Asso-
ciates, Inc., 2015.

Vinciotti, Veronica and Hand, David J. Local versus
global models for classification problems: Fitting mod-
els where it matters. The American Statistician, 57(2):
124–131, 2003.

http://blog.smola.org/post/4110255196/real-simple-covariate-shift-correction
http://blog.smola.org/post/4110255196/real-simple-covariate-shift-correction


Linking losses for density ratio and class-probability estimation

Supplementary material for “Linking losses for density ratio and
class-probability estimation”

A. The link Ψdr when π 6= 1
2

Our discussion in §4.1 assumed that π = 1
2 , as the KLIEP and LSIF risks (Equations 11, 13) would otherwise require

scaling each of the expectations. But in general, we expect π 6= 1
2 . Of course, since the role of π is just to scale the link

Ψdr by a constant, one may legitimately ignore its impact on the Bayes-optimal scorer. But for completeness, the general
case may be analysed as follows. A common way of simulating balanced classes is by weighting the loss by the inverse of
the class proportions, i.e. constructing

`bal,−1(v) = (1− π)−1 · `−1(v) and `bal,1(v) = π−1 · `1(v).

Note that this has risk
L(s;D, `bal) = EX∼P [`1(s(X))] + EX∼Q [`−1(s(X))] .

It is easy to check that `bal is also proper composite. This is a consequence of the following elementary fact.

Lemma 5. Suppose ` is differentiable and strictly proper composite with link Ψ. Then, for any a, b ∈ R− {0}, the loss

˜̀−1(v) = a · `−1(v) and ˜̀
1(v) = b · `1(v)

is also strictly proper composite with inverse link

Ψ̃−1(v) = (fa,b ◦Ψ−1)(v)

for
fa,b(z) =

z(
1− b

a

)
· z + b

a

.

Proof. By Equation 1,
`′1(v)

`′−1(v)
=

Ψ−1(v)− 1

Ψ−1(v)
.

We have
˜̀′
−1(v) = a · `′−1(v) and ˜̀′

1(v) = b · `′1(v).

We can form

Ψ̃−1(v) =
1

1− b
a ·

`′1(v)
`′−1(v)

=
1

1 + b
a ·

1−Ψ−1(v)
Ψ−1(v)

=
Ψ−1(v)

Ψ−1(v) + b
a · (1−Ψ−1(v))

= fab(Ψ
−1(v)),

which is invertible, thus implying that ˜̀ is strictly proper composite with link Ψ̃.

It is easy to check that

f−1
a,b (u) =

b
a · u

1 +
(
b
a − 1

)
· u
,

so that the link for ˜̀ is
Ψ̃(u) = Ψ(f−1

a,b (u)).
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Now suppose that a loss employs link Ψdr, as per Equation 9. Then, its corresponding ˜̀employs the link

Ψ̃(u) = Ψdr(f
−1
a,b (u))

=
f−1
a,b (u)

1− f−1
a,b (u)

=
b

a
· u

1− u
.

For the balanced loss with a = (1− π)−1 and b = π−1,

Ψbal(u) =
1− π
π
· u

1− u
,

which is exactly the general Ψdr of Equation 8. Thus, if we minimise `bal, we will have Bayes-optimal scorer exactly the
density ratio r. We can view the objectives of both KLIEP and LSIF as doing precisely this, even for general π 6= 1

2 .
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B. An alternate proof of Proposition 3
Fix some concave differentiable L : [0, 1]→ R; this will serve as a conditional Bayes risk for the CPE loss

λ−1(p) = L(p)− p · L′(p) and λ1(p) = L(p) + (1− p) · L′(p),

which is guaranteed to be proper by Reid & Williamson (2010, Theorem 7). (Unlike the losses in the body, we have
λ : {±1} × [0, 1] → R+.) Note that any other differentiable proper loss λ̃ with same conditional Bayes risk must differ
from λ by a linear term; this is because the two losses will have identical weight functions, and so must have identical
derivatives by Reid & Williamson (2010, Theorem 1).

The risk for an estimator η̂ : X→ [0, 1] under λ is

2 · L(η̂;D, λ) = EX∼P [λ1(η̂(X))] + EX∼Q [λ−1(η̂(X))]

= EX∼Q [r(X) · λ1(η̂(X)) + λ−1(η̂(X))]

where the second line uses an importance reweighting for the expectation with respect to Q.

Let g(z) = −(1 + z) · L( z
1+z ). (Evidently, g = f�, where f = −L.) Now, g′(z) = 1

1+z · −L′( z
1+z )− L( z

1+z ). So,

g′
(

η̂

1− η̂

)
= −(1− η̂) · L′(η̂)− L(η̂)

= −λ1(η̂),

and similarly

η̂

1− η̂
· g′
(

η̂

1− η̂

)
− g

(
η̂

1− η̂

)
= λ−1(η̂).

Further, the Bayes risk for the loss is (Reid & Williamson, 2011, Theorem 9)

2 · L∗(D, λ) ·= 2 · min
η̂ : X→[0,1]

L∗(η̂;D, λ)

= −Ig(P,Q)

= EX∼Q [−g(r(X))] ,

where Ig(·, ·) denotes the f -divergence with generator g. Thus,

2 · L(η̂;D, λ) = EX∼Q [−r(X) · g′(r(X)) + r̂(X) · g′ (r̂(X))− g(r̂(X))] ,

where r̂(x) = η̂(x)
1−η̂(x) . This implies the regret is

2 · reg(η̂;D, λ) = 2 · L(η̂;D, λ)− 2 · L∗(D, λ)

= EX∼Q [−r(X) · g′(r(X)) + r̂(X) · g′ (r̂(X))− g(r̂(X)) + g(r(X))]

= EX∼Q [Bg(r(X), r̂(X))] .

Note now that for any link Ψ and resulting proper composite `, we have L(η̂;D,λ) = L(s;D, `) where η̂ = Ψ−1 ◦ s, and
in particular reg(η̂;D, λ) = reg(s;D, `). Thus, the statement of the Proposition holds.
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C. Proposition 3 when π 6= 1
2

We now show how to generalise the analysis of Proposition 3 when π 6= 1
2 . Let

˜̀−1(v) = 2 · (1− π) · `−1(v) and ˜̀
1(v) = 2 · π · `1(v).

Then, we have the trivial risk equivalence

L(s; (P,Q, π), `) = L(s; (P,Q, 1/2), ˜̀).

and so
reg(s; (P,Q, π), `) = reg(s; (P,Q, 1/2), ˜̀).

By Lemma 5, the loss ˜̀ is strictly proper composite. So, we can just apply the original statement of Proposition 3 to the
right hand side: we get

reg(s; (P,Q, π), `) =
1

2
· EX∼Q

[
Bf�

π
(r(X), r̂(X))

]
,

where fπ is the negative Bayes risk of ˜̀. Note that, unlike in the original Proposition 3, the precise divergence being used
varies with π. This is somewhat awkward, and hence we favour the presentation of π = 1

2 in the body. Note also that the
above may be used to generalise Lemma 4, where again the weight will vary with π.
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D. On the f -divergence estimation view of density ratio estimation
Previous work (e.g. (Sugiyama et al., 2012a)) has explicated the relationship between density ratio estimation and the
estimation of a suitable f -divergence between the underlying distributions. Recall that for convex φ, φ(v) = supy yv −
φ∗(y), where φ∗ denotes the convex conjugate of φ. Thus, an f -divergence with convex generator φ is expressible as
(Nguyen et al., 2010)

Iφ(P,Q) = EX∼Q

[
φ

(
p(X)

q(X)

)]
= EX∼Q

[
sup
s∈R

(
p(X)

q(X)
· s− φ∗ (s)

)]
= sup
s : X→R

EX∼P [s(X)]− EX∼Q [φ∗(s(X))]

= − inf
s : X→R

EX∼P [−s(X)] + EX∼Q [φ∗(s(X))]

= −2 · inf
s : X→R

E(X,Y)∼D [`(Y, s(X))] , (31)

for a distribution D = (P,Q, 1
2 ), and a loss ` defined by

`−1(v) = φ∗(v) and `1(v) = −v. (32)

For φ strictly convex, φ∗ is differentiable (Rockafellar, 1972, Theorem 26.3), and φ′ invertible. Thus, the loss of Equation
32 is proper composite with inverse link

Ψ−1(v) =
1

1− `′1(v)
`′−1(v)

=
(φ∗)′(v)

(φ∗)′(v) + 1

=
(φ′)−1(v)

(φ′)−1(v) + 1
.

We thus have

Ψ(p) = φ′
(

p

1− p

)
.

Consider the Pearson divergence, with φ(v) = 1
2v

2. Then, Ψ = Ψdr as per Equation 9. Thus, the problem of estimating
the Pearson divergence in this manner implicitly involves computing the density ratio p/q for the class-conditionals.

While the above established that the loss (φ∗(v),−v) is one way to estimate an f -divergence, there is in fact an infi-
nite family of losses that will achieve the same task. All such losses simply modify the underlying link function that is
employed. Formally, we can understand Equation 32 in terms of a proper loss λ, defined by

λy(p) = `y(Ψ(p)) = `y

(
φ′
(

p

1− p

))
.

In particular,

λ−1(p) = φ∗
(
φ′
(

p

1− p

))
and λ1(p) = −φ′

(
p

1− p

)
.

Thus, Equation 32 is simply a manifestation of the fact that3 for such a λ,

Iφ(P,Q) = −2 · inf
η̂ : X→[0,1]

E(X,Y)∼D [λ(Y, η̂(X))] ,

3This is just a restatement of Reid & Williamson (2011, Theorem 9), which is presented in terms of the underlying Bayes risk for the
proper loss. Note that for the given λ, we have conditional Bayes risk L(η) = −(1− η) ·

(
η

1−η · φ
′( η

1−η )− φ
∗
(
φ′

(
η

1−η

)))
, which

by definition of conjugacy is L(η) = −(1− η) · φ
(

η
1−η

)
, as per Reid & Williamson (2011).
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where we now see that we have arbitrary flexibility in terms of the link function Ψ we employ to construct a proper
composite loss. In particular, given any φ, we can compute the proper loss λ, and then compose it with Ψdr to get a proper
composite loss whose minimisation gives us a density ratio. But we can equally well use some other link function, in which
case we will estimate the divergence, but will not directly estimate the density ratio.
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E. Weight functions for the family of power losses
See e.g. Reid & Williamson (2010) for the weights and link functions for the standard proper composite losses. For the
power loss with parameter α ∈ R+,

`−1(v) =
v1+α − 1

1 + α
and `1(v) =

1− vα

α
,

Lemma 1 established that the loss is proper composite with link Ψdr. The underlying proper loss λ = ` ◦Ψdr is

λ−1(u) =
1

1 + α
·

((
u

1− u

)1+α

− 1

)
and λ1(u) =

1

α
·
(

1−
(

u

1− u

)α)
. (33)

Observe that the partial losses are negatively unbounded; similarly, the negative Bayes risk is unbounded at the endpoints
0 and 1. Thus, this is not a definite loss in the sense of Reid & Williamson (2010).

Now, a proper loss satisfies λ′−1(u) = u · w(u) and λ′1(u) = −(1− u) · w(u) (Reid & Williamson, 2010, Theorem 1). It
is easy to check that

λ′−1(u) =

(
u

1− u

)α
· 1

(1− u)2
and λ′1(u) = −

(
u

1− u

)α−1

· 1

(1− u)2
.

Thus, from either equation, the weight function for the loss is

w(c) =
1

c1−α · (1− c)2+α
.

which is an instance of the (α, β) Beta family of weight functions from Buja et al. (2005, Section 11), where β = 1 − α.
By Equation 21, the weight over density ratios is checked to be

wDR(ρ) = ρα−1.

The latter weight relates to a family of power divergences proposed in Basu et al. (1998), as already noted by Sugiyama
et al. (2012a). We can explicate this connection in our jargon as follows. Considering the weight w(c) = cα−1 over cost
ratios, we have corresponding negative Bayes risk

f(c) =

∫ ∫
w(c) dc dc =

1

α · (α+ 1)
· cα+1,

assuming for simplicity that α /∈ {−1, 0}. Since f ′(c) = cα

α , we have Bregman divergence

Bf (x, y) =
1

α · (α+ 1)
· (xα+1 − yα+1 − (α+ 1) · yα · (x− y))

=
1

α · (α+ 1)
· (xα+1 − yα+1 − (α+ 1) · yα · x+ (α+ 1) · yα+1)

=
1

α · (α+ 1)
· (xα+1 − (α+ 1) · yα · x+ α · yα+1)

=
1

α+ 1
·
(

1

α
· xα+1 −

(
1 +

1

α

)
· yα · x+ yα+1

)
.

Now consider probability densities p, q over some instance space X. Then,∫
X

Bf (p(x), q(x)) dx =
1

α+ 1
·
∫
X

(
1

α
· p(x)α+1 −

(
1 +

1

α

)
· q(x)α · p(x) + q(x)α+1

)
dx,

which is a scaled version of the divergence between p, q proposed in Basu et al. (1998, Equation 2.1).
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F. Convex versions of the family of power losses for α > 1

Recall from Appendix E that the power family of losses has weight over cost ratios given by

w(c) =
1

c1−α · (1− c)2+α

with underlying proper loss

λ−1(u) =
1

1 + α
·

((
u

1− u

)1+α

− 1

)
and λ1(u) =

1

α
·
(

1−
(

u

1− u

)α)
.

For the proper composite loss ` = λ ◦ Ψ to be convex, the weight w and link Ψ must satisfy (Reid & Williamson, 2010,
Theorem 29)

−1

c
≤ w′(c)

w(c)
− Ψ′′(c)

Ψ′(c)
≤ 1

1− c
.

For the power weight, we have

w′(c) =
3c+ α− 1

c2−α · (1− c)3+α
,

and so
w′(c)

w(c)
=

3c+ α− 1

c · (1− c)
.

Thus, any candidate link must satisfy

Ψ′′(c)

Ψ′(c)
∈
[

2

1− c
+

α− 1

c · (1− c)
,

2

1− c
+

α

c · (1− c)

]
. (34)

Consider the link function Ψdr(c), which we showed was employed by the power losses in Lemma 1. This link has
Ψ′dr(c) = 1

(1−c)2 , and Ψ′′dr(c) = 2
(1−c)3 , so that

Ψ′′(c)

Ψ′(c)
=

2

1− c
.

Evidently, this satisfies Equation 34 only if α < 1; for α > 1, the left hand side of the bound is greater than 2
1−c . This

explains why the power family of losses as presented in §4.1 is only convex for α ∈ (0, 1].

It is natural to seek the canonical link for the above weight function, so as to guarantee convexity. This is easily checked
to be

Ψcan(u) =
1

α · (α+ 1)
· uα

(1− u)1+α
· (α+ 1− u)− 1

α
,

with Ψcan(u) → log u
1−u + 1

1−u as α → 0. Unfortunately, the link does not possess an analytic inverse for general α.
Thus, generating the corresponding proper composite loss is not simple. (For α = 1, we presented the canonical link in
Equation 25.) We can fortunately generate convex losses for general α by employing a simple non-canonical link. It is
easily checked that a Ψ′ satisfying the left hand side of the bound in Equation 34 is

Ψ′(c) =
1

c1−α · (1− c)1+α

with corresponding Ψ for α 6= 0

Ψ(c) =
1

α
·
(

c

1− c

)α
,

with the constant of integration chosen such that Ψ(0) = 0 and Ψ(1) = +∞. (Choosing the constant so that Ψ(0) = −1/α
allows for α = 0 to be handled as well, but as this lower bound is somewhat awkward, we will handle that case separately.)
This can further be checked to have inverse

Ψ−1(v) =
(α · v)1/α

(α · v)1/α + 1
= Ψ−1

dr ((α · v)1/α),
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defined on v ∈ [0,∞). Defining ` = λ◦Ψ−1 for λ as per Equation 33, the corresponding proper composite loss employing
this link is then

`−1(v) =
(α · v)

1+α
α − 1

1 + α
and `1(v) =

1− α · v
α

for v ≥ 0.

For example, when α = 2, we have the proper composite loss

`−1(v) =
(2 · v)

3
2 − 1

3
and `1(v) =

1

2
− v

with link Ψ−1(v) =
√

2v/(1 +
√

2v) for v ≥ 0.

For α = 0, the admissible link is
Ψ(c) = log

c

1− c
,

being the standard logit function. Note that Ψ(0) = −∞ and Ψ(1) = +∞, so that there is no constraint on the range of
scores. The corresponding proper composite loss is

`−1(v) = ev and `1(v) = −v.



Linking losses for density ratio and class-probability estimation

G. The canonical loss for the step weight function
Consider the weight given by

w(c) =

{
1 if c ∈ [a, b]
1
h else.

By definition, the canonical link is

Ψ(c) =


c
h if c ∈ [0, a]

c+ (1−h)
h · a if c ∈ [a, b]

c
h + h−1

h · (b− a) if c ∈ [b, 1],

with inverse

Ψ−1(v) =


h · v if v ∈ [0, ah ]

v + (h−1)
h · a if v ∈ [ ah , b+ 1−h

h · a]

h · v + (h− 1) · (a− b) if c ∈ [b+ 1−h
h · a,

1
h + h−1

h · (b− a)].

The corresponding canonical proper composite loss is thus the following amalgam of three square losses:

`−1(v) =


h
2 · v

2 if v ∈ [0, ah ]
1
2v

2 + (h−1)
h · a · v + 1−h

2h2 · a2 if v ∈ [ ah , b+ 1−h
h · a]

h
2 · v

2 + (h− 1) · (a− b) · v + (h− 1) · (a−b)2·h−2a2+2ab
2h if c ∈ [b+ 1−h

h · a,
1
h + h−1

h · (b− a)],

and `1(v) = `−1(v)− v. In practice, as with square loss, one can allow v to be arbitrary, and then post-hoc truncate scores
to lie in Im(Ψ−1); alternately, with a linear model and bounded feature mapping, one can strongly regularise the weight
vector to ensure that scores are in the desired range.
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H. Additional experiments for “ranking the best” problems
Table 4 summarises the number of samples (n) and dimensions (d) for several benchmark datasets. For the high dimen-
sional real-sim and news20-forsale datasets, we performed an SVD projection to 100 dimensions.

Dataset n d

german 1000 24
spambase 4601 57
magic 19020 10
news20-forsale 19928 62061

Dataset n d

skin 245057 3
w8a 64700 300
real-sim 72309 20958
nsl-kdd 148517 119

Table 4: Statistics for datasets used in “ranking the best” experiments.

We use as performance measures the area under the ROC curve (AUC), mean reciprocal rank (MRR), average precision
(AP), fraction of positives ranked higher than the first negative (PTop), and Precision@10 (Prec@10) (Agarwal, 2011).
Table 5 summarises the results on these datasets, using the methods described in §8.3. We find that the LSIF loss is
superior to the logistic loss on all measures but AUC (which is agnostic to the position of a ranking mistake). It is also
strongly competitive with the p-classification loss on most measures, although the latter is superior on the DCG and AP
measures. We expect that the gap between the two to shrink with a better feature representation or choice of kernel. We
again emphasise that we believe the closed form solution of the LSIF loss makes it an appealing choice of baseline.

Loss AUC MRR DCG AP PTop Prec@10

Logistic 0.8051 ± 0.0080 (1) 0.0369 ± 0.0016 (2) 0.1846 ± 0.0015 (3) 0.6087 ± 0.0192 (3) 0.0224 ± 0.0083 (3) 0.7000 ± 0.0333 (2)

german p-class 0.8026 ± 0.0084 (2) 0.0392 ± 0.0014 (1) 0.1863 ± 0.0012 (1) 0.6121 ± 0.0185 (1) 0.0316 ± 0.0084 (2) 0.7000 ± 0.0394 (2)

LSIF 0.8009 ± 0.0098 (3) 0.0392 ± 0.0015 (1) 0.1862 ± 0.0014 (2) 0.6101 ± 0.0196 (2) 0.0364 ± 0.0114 (1) 0.7500 ± 0.0373 (1)

Logistic 0.9658 ± 0.0011 (1) 0.0104 ± 0.0004 (3) 0.1336 ± 0.0004 (2) 0.9337 ± 0.0035 (2) 0.0202 ± 0.0084 (3) 0.9200 ± 0.0249 (3)

spambase p-class 0.9631 ± 0.0010 (2) 0.0113 ± 0.0001 (1) 0.1344 ± 0.0002 (1) 0.9408 ± 0.0030 (1) 0.0888 ± 0.0345 (1) 0.9800 ± 0.0133 (1)

LSIF 0.9423 ± 0.0020 (3) 0.0108 ± 0.0003 (2) 0.1335 ± 0.0003 (3) 0.9149 ± 0.0033 (3) 0.0479 ± 0.0162 (2) 0.9500 ± 0.0269 (2)

Logistic 0.8418 ± 0.0011 (2) 0.0020 ± 0.0000 (2) 0.0961 ± 0.0000 (3) 0.8867 ± 0.0018 (3) 0.0018 ± 0.0005 (3) 0.9200 ± 0.0133 (2)

magic p-class 0.8434 ± 0.0012 (1) 0.0020 ± 0.0000 (2) 0.0962 ± 0.0000 (2) 0.8962 ± 0.0017 (2) 0.0031 ± 0.0017 (2) 0.9100 ± 0.0233 (3)

LSIF 0.8329 ± 0.0011 (3) 0.0021 ± 0.0000 (1) 0.0963 ± 0.0000 (1) 0.8996 ± 0.0014 (1) 0.0095 ± 0.0038 (1) 0.9500 ± 0.0224 (1)

Logistic 0.8016 ± 0.0033 (3) 0.0035 ± 0.0003 (3) 0.1068 ± 0.0004 (3) 0.1487 ± 0.0041 (3) 0.0003 ± 0.0003 (3) 0.1200 ± 0.0249 (3)

news20-forsale p-class 0.8456 ± 0.0048 (1) 0.0105 ± 0.0007 (2) 0.1218 ± 0.0012 (1) 0.2817 ± 0.0113 (1) 0.0054 ± 0.0018 (2) 0.5500 ± 0.0637 (1)

LSIF 0.8178 ± 0.0060 (2) 0.0107 ± 0.0006 (1) 0.1189 ± 0.0013 (2) 0.2351 ± 0.0106 (2) 0.0101 ± 0.0014 (1) 0.5300 ± 0.0616 (2)

Logistic 0.9475 ± 0.0003 (1) 0.0002 ± 0.0000 (1) 0.0696 ± 0.0000 (1) 0.9886 ± 0.0001 (1) 0.9146 ± 0.0003 (2) 1.0000 ± 0.0000 (1)

skin p-class 0.9466 ± 0.0003 (2) 0.0002 ± 0.0000 (1) 0.0696 ± 0.0000 (1) 0.9884 ± 0.0001 (2) 0.9101 ± 0.0008 (3) 1.0000 ± 0.0000 (1)

LSIF 0.9461 ± 0.0003 (3) 0.0002 ± 0.0000 (1) 0.0696 ± 0.0000 (1) 0.9884 ± 0.0001 (2) 0.9149 ± 0.0022 (1) 1.0000 ± 0.0000 (1)

Logistic 0.9676 ± 0.0009 (1) 0.0074 ± 0.0003 (3) 0.1232 ± 0.0003 (3) 0.6631 ± 0.0034 (3) 0.0002 ± 0.0002 (3) 0.6500 ± 0.0619 (3)

w8a p-class 0.9673 ± 0.0010 (2) 0.0106 ± 0.0001 (1) 0.1285 ± 0.0003 (1) 0.7741 ± 0.0029 (1) 0.2206 ± 0.0111 (1) 1.0000 ± 0.0000 (1)

LSIF 0.9482 ± 0.0014 (3) 0.0102 ± 0.0001 (2) 0.1249 ± 0.0002 (2) 0.6671 ± 0.0049 (2) 0.0702 ± 0.0260 (2) 0.9600 ± 0.0267 (2)

Logistic 0.9852 ± 0.0001 (1) 0.0013 ± 0.0000 (1) 0.0896 ± 0.0000 (1) 0.9674 ± 0.0003 (2) 0.0927 ± 0.0064 (2) 1.0000 ± 0.0000 (1)

real-sim p-class 0.9842 ± 0.0001 (2) 0.0013 ± 0.0000 (1) 0.0896 ± 0.0000 (1) 0.9675 ± 0.0003 (1) 0.1288 ± 0.0220 (1) 1.0000 ± 0.0000 (1)

LSIF 0.9805 ± 0.0002 (3) 0.0013 ± 0.0000 (1) 0.0894 ± 0.0000 (2) 0.9568 ± 0.0006 (3) 0.0328 ± 0.0052 (3) 1.0000 ± 0.0000 (1)

Logistic 0.9810 ± 0.0002 (2) 0.0004 ± 0.0000 (1) 0.0769 ± 0.0000 (2) 0.9803 ± 0.0003 (3) 0.3711 ± 0.0229 (1) 1.0000 ± 0.0000 (1)

nsl-kdd p-class 0.9867 ± 0.0001 (1) 0.0004 ± 0.0000 (1) 0.0770 ± 0.0000 (1) 0.9886 ± 0.0001 (1) 0.2478 ± 0.0654 (3) 1.0000 ± 0.0000 (1)

LSIF 0.9756 ± 0.0002 (3) 0.0004 ± 0.0000 (1) 0.0769 ± 0.0000 (2) 0.9811 ± 0.0002 (2) 0.2706 ± 0.0563 (2) 1.0000 ± 0.0000 (1)

Logistic 1.5000 2.0000 2.2500 2.5000 2.5000 2.0000

Average rank p-class 1.6250 1.2500 1.1250 1.2500 1.8750 1.3750

LSIF 2.8750 1.2500 1.8750 2.1250 1.6250 1.3750

Table 5: “Ranking the best” results. Reported are mean and standard error across 10 random splits. Higher scores are better.
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