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Abstract

Modern genomics techniques generate overwhelming quantities of data. Extracting popula-

tion genetic variation demands computationally efficient methods to determine genetic relat-

edness between individuals (or “samples”) in an unbiased manner, preferably de novo.

Rapid estimation of genetic relatedness directly from sequencing data has the potential to

overcome reference genome bias, and to verify that individuals belong to the correct genetic

lineage before conclusions are drawn using mislabelled, or misidentified samples. We pres-

ent the k-mer Weighted Inner Product (kWIP), an assembly-, and alignment-free estimator

of genetic similarity. kWIP combines a probabilistic data structure with a novel metric, the

weighted inner product (WIP), to efficiently calculate pairwise similarity between sequencing

runs from their k-mer counts. It produces a distance matrix, which can then be further

analysed and visualised. Our method does not require prior knowledge of the underlying

genomes and applications include establishing sample identity and detecting mix-up, non-

obvious genomic variation, and population structure. We show that kWIP can reconstruct

the true relatedness between samples from simulated populations. By re-analysing several

published datasets we show that our results are consistent with marker-based analyses.

kWIP is written in C++, licensed under the GNU GPL, and is available from https://github.

com/kdmurray91/kwip.

This is a PLOS Computational Biology Software paper.

Introduction

A major application of DNA sequencing is comparing the genetic make-up of samples with

one another to either identify commonalities, and thus detect relatedness, or to leverage the

differences to elucidate function. Initially, one seeks to confirm assumed genetic lineages and
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replicates or to group samples into families, populations, and species. Estimating the genetic

relatedness between a broad collection of samples must avoid bias and have minimal per sam-

ple cost.

Nowadays, the vast majority of studies in population genomics are performed using next

generation sequencing (NGS) [1]. The methods commonly employed to analyse whole

genome DNA sequencing data rely on two complementary concepts: the assembly of refer-

ence genomes and comparing samples to this reference by re-sequencing, read mapping, and

variant calling. This approach, while functional in model organisms, is not ideal. Selecting

the reference individual is mostly random, generating a reference genome assembly is time

consuming and costly [2, 3], and analyses based on read alignment to a possibly inappropri-

ate reference genome sequence are highly susceptible to bias [4, 5], to the point where large

parts of the genomes are missed when sufficiently different or absent from the reference.

Alignment-free methods for measuring genetic relatedness would help overcome this refer-

ence genome bias.

Another issue of concern is sample identification. A recent review [6] found that sample

misidentification occurs at an alarming rate. With ever increasing sample numbers in (popula-

tion) genetic projects, the issue of correct and consistent metadata arises on several levels: tech-

nical (mix-up) and biological (misidentification). Large field, and entire gene bank collections

are being DNA-sequenced. With sample handling from the field through the laboratory to the

sequence read files and eventual upload to data repositories, there is ample opportunity for

mix-up and mislabelling of samples and files. This problem is exacerbated by the often highly

collaborative nature of such undertakings. Some misidentifications, however, might be virtu-

ally undetectable without molecular genetic analysis, such as varying levels of ploidy, cryptic

species, or sub-genomes in (compilo)species complexes [7]. Unfortunately, much of this hid-

den variation is easily overlooked by following aforementioned current best practices to calcu-

late genome-wide genetic relatedness from short read sequencing data. Erroneous sample

identification and/or underestimating the level of divergence has implications for downstream

analysis choices, such as which samples and populations to use for a Genome Wide Associa-

tion Study (GWAS); the missing heritability might then in fact be in the metadata.

The field of alignment-free sequence comparison aims to combat these difficulties by avoid-

ing the process of sequence alignment. Approaches include decomposition into words, i.e.,

substrings of length k, commonly referred to as k-mers [8–11], sub-string or text processing

algorithms [12–14], and information theoretic measures of sequence similarity or complexity

[15]. While avoiding sequence alignment, some alignment-free sequence comparison tools

still require prior knowledge of the underlying genome sequences, which precludes their use

as a de novo tool. Recently, several algorithms enabling de novo comparisons have been pub-

lished. These extensions all attempt to reconstruct phylogenetic relationships from sequencing

reads. Spaced [13, 16] uses the Jensen-Shannon distance on spaced seeds (small k-mers a

short distance from one another or with interspersed disregarded bases) to improve perfor-

mance of phylogenetic reconstruction. Cnidaria [17] and AAF [18] use the Jaccard distance

to reconstruct phylogenies, while mash [19] uses a MinHash approximation of Jaccard dis-

tance to the same effect.

One of the most established and studied alignment-free sequence comparison metrics is the

D2 statistic [8, 10]. It measures the difference between two sequences by the number of k-mer

matches. First, all k-mers are counted in each sequence and recorded in a count vector. Then

the difference between those vectors is measured. In the case of the original D2 statistic, this

is achieved by simply building the vector product. Several derivatives of the D2 statistics, e.g.,

D�
2
, DS

2
, have been developed over the years [8, 20–23], which aim to improve accuracy by

modelling and correlating observed versus expected k-mer frequencies. While these statistics

The k-mer weighted inner product
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have been extended to Next Generation Sequence data [24] and successfully applied to meta-

genome comparisons [25], these D2 statistic derivatives, such as D�
2

and DS
2
, have the significant

drawbacks of slow computational speed and the difficulties of defining the background

models.

Here we present the k-mer Weighted Inner Product, a new metric to estimate genetic relat-

edness that introduces and combines two concepts to k-mer-based sequence comparison. Simi-

lar to the D2 statistic(s), the similarity measure is an inner product of k-mer counts, but firstly,

we no longer compare every k-mer, but rather hash all k-mers of a sample into a probabilistic

data structure: a sketch [26]. The resulting sketches are, in effect, vectors of k-mer counts;

importantly, the sketches for all samples have a constant size. Secondly, we introduce an infor-

mation-theoretic weighting to elevate the relevant genetic signal above the noise. Pairwise

similarity is then calculated by the inner product between k-mer counts, weighted by the infor-

mation content derived from their frequencies across the population. Our procedure is imple-

mented in a software tool (kWIP) that calculates our metric, the k-mer Weighted Inner

Product, directly from sequencing reads. We show by simulations and by re-analysing published

datasets, that kWIP can quickly, and accurately detect genetic relatedness between samples.

Design and implementation

kWIP operates on files containing sequencing reads generated by common modern sequenc-

ing platforms (e.g., Illumina). First, kWIP utilises khmer [27, 28] to count overlapping words

of length k (k-mers) into a probabilistic data structure, a sketch, for each sample. In order to

establish the weights kWIP then counts presence/absence of each k-mer across all sample

sketches and records this population occurrence frequency in a frequency sketch (F). We cal-

culate similarity (K) as the inner product between each pair of sample sketches, weighted by

the Shannon entropy (H) of the respective frequency (F). The concept is illustrated in Fig 1.

Fig 1. Overview of the weighted inner product metric as implemented in kWIP. (A) k-mers are counted into sketches (using khmer [28]). Columns

represent the “bins” in each sketch. The frequencies of non-zero counts across a set of sketches is computed, forming the population frequency sketch

(denoted F). We calculate Shannon entropy of this frequency sketch as the weight vector for the WIP metric (denoted H, see Eq 2). (B) Illustration of

Shannon Entropy as used in kWIP: the relationship between the population frequency (F) and the weight (H).

https://doi.org/10.1371/journal.pcbi.1005727.g001
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k-mer counting

For each sample, kWIP uses khmer to decompose sequencing reads into overlapping words

of some fixed length k, e.g., 20. The value of a reversible hash function is computed for each

k-mer. k-mers are canonicalised by using the lexicographically smaller of a k-mer and its

reverse complement. k-mers are counted using one sketch per sample. These sketches are

vectors with prime number length, typically several billion elements in size (denoted Si for

sample i). The elements of these sketches are referred to as bins (indexed by b, e.g. Sib), and

can store values between 0 and 255 (integer overflow is prevented). To count a k-mer, the b-

th bin of the sketch (Sib) is incremented, where b is the hash value of the k-mer modulo the

(prime) length of the sketch. For most use cases, k-mers between 19 and 21 bases long should

achieve a good balance between specificity and sensitivity across genomes and genomic

regions [29]. Note that the possible number of k-mers (4k) is much larger than the length of a

sketch. Therefore, aliasing (or “collisions”) between k-mers can occur, but in practice can be

avoided with appropriate parameter selection [27]. It is worth noting that aliasing can only

increase similarity between any two samples and should occur uniformly across all sample

pairs.

Weighting and similarity estimation

Genetic similarity is estimated by calculating the inner product between each pair of sample

sketches (Si, Sj), weighted by the informational content of each bin. The population frequency

sketch (F) contains the frequency of occurrence for each bin, calculated as the proportion of

samples with a non-zero count for each bin. We calculate a weight vector (H) of these occur-

rence frequencies using Shannon entropy as per Eq (1). In the Weighted Inner Product (WIP)

metric (or kernel), pairwise similarities are then calculated as the inner product over every pair

of sample sketches, weighted by H as per Eq (2). The unweighted Inner Product (IP) metric is

simply the inner product between the two sketch vectors, STi Sj, without weighting. This pro-

duces a matrix of pairwise inner products K, commonly referred to as a kernel matrix. The ker-

nel matrix is then normalised using the Euclidean norm Eq (3), and converted to distances

using the “kernel trick” [30] as per Eq (4). To ensure distance matrices are Euclidean, kWIP
confirms that the resulting kernel matrix is positive semi-definite by checking that all eigenval-

ues are non-negative using the Eigen3 library [31].

The distances kWIP produces are relative within the set of samples being compared. This is

because the weight vector (H) is specific to the set of samples and the similarity estimates are

normalised to account for varying sequencing coverage. In other words, the kWIP distance for

a given pair of samples will depend on the set of samples within which they are analysed.

H ¼ � ðF log 2ðFÞ þ ð1 � FÞ log 2ð1 � FÞÞ ð1Þ

Kij ¼
Xn

b¼1

SibSjbHb ð2Þ

K 0ij ¼
Kij
ffiffiffiffiffiffiffiffiffiffi
KiiKjj

p ð3Þ

Dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 0ii þ K 0jj � 2K 0ij

p
ð4Þ
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Implementation

Pairwise calculation of genetic distances from k-mer count files with both the WIP and IP met-

rics is implemented in C++ as kWIP. kWIP is licensed under the GNU GPL, and source code

and pre-compiled executables are available from https://github.com/kdmurray91/kwip. Docu-

mentation and tutorials are available from https://kwip.readthedocs.io. To use kWIP, one first

counts k-mers present in each sample using khmer’s load-into-counting.py script

[28]. kWIPwill then estimate similarity from these counts, producing a normalised Euclidean

distance matrix and, optionally, the corresponding similarity matrix (kernel matrix). kWIP
parallelises pairwise similarity calculations across cores of a multi-threaded computer to

ensure fast operation.

Results

We show that kWIP is able to accurately determine genetic relatedness in many scenarios.

Using a simulated population re-sequencing experiment, we quantify how the population fre-

quency-based weighting applied by kWIP improves accuracy, that is the correlation with the

known truth, when compared to existing approaches, mash [19], and the unweighted metric,

IP. We recover known technical and biological relationships between sequencing runs of the

3000 Rice Genomes project [32, 33]. We show that kWIP’s estimate of genetic relationships

between Chlamydomonas samples is nearly identical to results obtained by a more traditional,

SNP-based analysis employing read mapping and variant calling against a reference genome

with the same sequencing data [34]. By analysing a dataset on root-associated microbiomes

[35], we show that our approach of sample clustering by kWIP can be extended to clustering

of metagenome samples.

Quantification of kWIP performance

We quantified the performance of kWIPwith simulated population sequencing data. We com-

pare our novel metric, the weighted inner product (WIP), to the unweighted inner product

(IP), which we consider equivalent to the D2 statistic, and to mash [19]. We simulated 20 pop-

ulations of 12 individuals with 1 MBp genomes and analysed each with kWIP and mash for k-

mers of k = 20. A summary of the results of these 20 replicate analyses with each of the metrics

is shown in Fig 2.

Unsurprisingly, for all metrics the accuracy, that is the rank correlation (Spearman’s ρ) to

known truth, decreases with decreasing genome coverage, i.e., average sample sequencing

depth (Fig 2A), as well as with decreasing average number of nucleotide differences per site, π
(Fig 2B).

Importantly, at low coverages, the weighted metric (“WIP”) performs better than the

unweighted (“IP”) (Fig 2A). Above a certain coverage, in the case of our simulations above

about 30-fold, the performances of the WIP and IP metrics converge. At a constant genome

coverage, the improvement in accuracy of the WIP metric relative to the IP metric increases

as mean pairwise genetic variation decreases (Fig 2B). While the accuracy of the IP metric

decreases markedly below an average number of nucleotide differences per site (π) of approxi-

mately 0.01, the WIP metric does not show such decrease.

In order to compare the performance of kWIP relative to Mash [19] we conducted two

analyses with mash: one with abundance filtering enabled to remove singleton k-mers (“Mash

AF”) and one without (“Mash“). Within the scope of our simulations kWIP yields more accu-

rate results than mashwhen sequencing coverage and/or sequence divergence is low; a typical

scenario in large-scale, population genetic analyses within species. Through the entire range of

simulation parameters, kWIP never yields results less accurate than mash, irrespective of

The k-mer weighted inner product
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abundance filtering (Fig 2). It is interesting to note that mash appears to exhibit characteristic

accuracy maxima, and accuracy decreases dramatically when mean sequencing depth is fur-

ther increased. In addition, abundance filtering seems to have a strong, genome coverage-

dependent effect on the accuracy of mash (Fig 2A). With the chosen parameter settings, mash
runs much faster than kWIP (about 10-fold faster; see performance comparisons in Table 1).

In analyses with kWIPwe find that the coefficient of variation between the number of

sequencing reads per sample matters. For samples with much lower mean sequencing depth

than the average, kWIP has difficulty to accurately determine its relatedness to other samples.

Table 1. Computational performance of kWIP.

Dataset Dataset Size Distance Calculation Time (s)

Samples Reads k-mers Mash WIP IP

Simulation (8x) 36 7.9e4 ± 2.4e3 1.3e6 ± 1.3e5 6 ± 1 45 ± 3 40 ± 4

Simulation (32x) 36 3.2e5 ± 1.0e4 2.3e6 ± 3.8e5 5 ± 1 53 ± 3 46 ± 5

Rice Replicates 96 9.7e6 ± 1.5e6 1.8e8 ± 1.5e7 - 2241 ± 139 1892 ± 286

Chlamydomonas 20 2.0e8 ± 2.4e7 1.4e8 ± 1.4e7 - 127 194

Measurements of calculation time are in wall-clock seconds on a 16-core, 64GB GNU/Linux server. Figures are means ± standard deviations. For

simulations, these are over the 20 replicate runs performed. For rice replicate clustering, these are over 10 of the 100 independent sets of 96 rice samples.

For Chlamydomonas, times are for the full dataset. The sketch sizes used were 109 bins for kWIP/khmer, and 104 for Mash. Note that k-mers refers to the

number of distinct k-mers as estimated by khmer.

https://doi.org/10.1371/journal.pcbi.1005727.t001

Fig 2. The effect of (A) mean sequencing depth (genome coverage) and (B) average number of nucleotide differences per site (π) on

accuracy of genetic similarity estimates in simulations. We plot mean ± standard deviation of Spearman’s ρ comparing each metric to known

truth across 20 replicate runs. (A) Mean sequencing depth varies while average number of nucleotide differences per site (π) is constant at 0.005.

kWIP: At low to moderate mean sequencing depth (<30x) weighting increases accuracy. The weighted metric (“WIP”) obtains near-optimal accuracy

already at 10x and hence much earlier than the unweighted metric “IP”). There is no noticeable decrease in accuracy with increasing coverage. mash:

regardless of error correction, mash performs less well than WIP. mash shows accuracy maxima at 4x coverage without (“Mash”) and at 16x

coverage with abundance filter (“Mash (AF)”), at which point Mash (AF) performs almost as well as WIP. The accuracy of mash decreases

dramatically when coverage is further increased. (B) Genome coverage is kept constant at 8x and average number of nucleotide differences per site

(π) varies. While all metrics perform equally at a (π) of 1 in 100 (0.01), the performance of IP, Mash and Mash (AF) decreases rapidly as (π) between

samples decreases. This does not occur for the weighted metric (WIP).

https://doi.org/10.1371/journal.pcbi.1005727.g002
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We therefore advise to exclude such samples from kWIP analyses or sub-sample reads from

the remainder, if the dataset allows. khmer provides procedures for “digital normalisation”,

which can be used upstream of kWIP to that effect [36]. Our simulations suggest that varia-

tions in genome coverage between samples will also affect the results obtained with mash.

Replicate clustering

kWIP can efficiently verify replicates. Fig 3A and 3B show a representative example of replicate

clustering. The weighted metric (WIP) is able to accurately cluster replicates (Fig 3A), whereas

the unweighted metric (IP) makes mistakes, as highlighted in red in Fig 3B. We quantified this

difference in performance and Fig 3C shows the distribution of rank correlation coefficients

between distances obtained with the WIP and IP metrics and the expected clustering patterns

for 100 sets of 96 sequencing runs. The WIP metric outperforms the IP metric, having a signif-

icant higher mean correlation (paired Student’s T test, n = 84, t = 9.63, df = 83, p = 3.6 × 10−15).

Population structure

Flowers, et al. [34] sequenced 20 strains of Chlamydomonas reinhardtii; laboratory strains and

wild accessions sourced from across the continental USA. By alignment- and SNP-based anal-

ysis, they find significant population structure that is mostly explained by geography [34]. In

Fig 4B we display the published genetic relationships as a principal component analysis (PCA)

of SNP genotypes calculated with SNPRelate [37] exactly as presented by the authors [34]. PC1

separates the laboratory strains (and one western sample) from both eastern and western

samples with further structure among wild Chlamydomonas accession collected in western,

southeastern and northeastern USA. In Fig 4A we plot the relatedness between the strains as

revealed directly from the raw sequencing reads with kWIP. We note that the results are highly

similar; the rank correlation between kWIP distances and genome average identity-by-state

(calculated with SNPRelate [37]) is 0.95.

Fig 3. Weighting improves the accuracy of replicate clustering. (A) and (B) show a representative example, demonstrating that (A) the weighted

metric (WIP) correctly clusters all sets of 6 replicate runs into their respective samples (indicated by blue and green bars) while (B) the unweighted metric

(IP) fails to cluster several replicates correctly (indicated by red highlighting). (C) rank correlation coefficients to expected relationships over 100 sets of

96 rice runs for the WIP and IP metrics. The Weighted metric tends to cluster the replicates better.

https://doi.org/10.1371/journal.pcbi.1005727.g003

The k-mer weighted inner product
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Each of the 20 strains had been sequenced to a depth of roughly 200-fold genome coverage

[34]. By systematically sub-sampling this dataset we investigated the effect of coverage on the

accuracy of kWIP’s similarity estimation. We find that with decreasing coverage the accuracy

of the relationship estimations decreases (Fig 5A). We illustrate this decay by PCA plots of esti-

mated genetic relatedness at varying coverages (Fig 5B). We note that the performance of

kWIP to determine similarity is very good even at low coverages. A two-fold genome coverage

is enough to detect the major splits in this dataset (Laboratory vs West vs East).

Metagenome relatedness

Edwards, et al. [35] sequenced 16S rDNA amplicons from rice root-associated microbiomes

and find stratification of samples by rhizo-compartment, cultivation site, and cultivation prac-

tice. Analysing their raw sequencing data with kWIP, we detect highly similar stratification

between microbial communities. An example is shown in Fig 6. We observe a gradient of sam-

ples from within the root, through the root-soil interface into soil, and separation by cultiva-

tion site. This replicates the separation of samples by rhizo-compartment and cultivation site

published by Edwards, et al. [35], shown in Fig 6.

Discussion

The k-mer Weighted Inner Product (kWIP) estimates genetic distances between samples

within a population of samples directly from next generation sequencing data. kWIP does not

require a reference genome sequence and is able to estimate the genetic distances between

samples with less data than is typically used to call SNPs against a reference. As a k-mer-based

method, kWIP is sequencing protocol and platform agnostic, allowing use into the future.

kWIP uses a new metric, the weighted inner product (WIP), which aims to reduce the effect

of technical and biological noise and elevate the relevant genetic signal by weighting k-mer

counts by their informational entropy across the analysis set. This weighting has the effect of

down-weighting k-mers that are either highly abundant or present in very few samples. Those

k-mers are typically uninformative, because they are either common, fixed, repetitive,

Fig 4. Genetic relatedness between Chlamydomonas reinhardtii strains based on sequencing data from [34].

SNPrelate [37] was used to compute the PCA decomposition directly from SNP genotypes provided by the authors. This

replicates the analysis of [34] and is displayed on the right. On the left, we show the results of MDS performed on the

distance matrix obtained with kWIP.

https://doi.org/10.1371/journal.pcbi.1005727.g004

The k-mer weighted inner product
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invariable, or rare, or erroneous. By using Shannon entropy, the weights of common and infre-

quent k-mers are assigned lower, but non-zero weights, allowing them to contribute to the

signal.

Euclidean distances are then calculated from these weighted inner products and kWIP out-

puts a matrix of pairwise distances between samples, which are easily visualised and may be

Fig 5. The effect of mean sequencing depth (genome coverage) on kWIP’s estimate of genetic relatedness between samples of

Chlamydomonas reinhardtii (data from [34]). (A) Spearman’s rank correlation between sub-sampled datasets and the full dataset across a

range of subset average genome coverages. (B) PCA plots of relatedness obtained using kWIP on selected sub-sampled datasets. “full” refers to

the entire dataset (i.e., Fig 4), while “0.1x” refers to a sub-sampled dataset with average mean sequencing depth of 0.1 over the C. reinhardtii

genome (likewise for 1x, 2x, and so on).

https://doi.org/10.1371/journal.pcbi.1005727.g005

Fig 6. Estimation of similarity between metagenome samples. We used kWIP to examine 16S rDNA amplicon sequencing data of Edwards, et al.

[35] and compare our kWIP result (“kWIP”) with the results as presented by Edwards, et al. (“Weighted UniFrac” and “UniFrac”). We find that kWIP
replicates their observations of stratification of root-associated microbiomes by rhizo-compartment (PC1) and experiment site (PC2).

https://doi.org/10.1371/journal.pcbi.1005727.g006

The k-mer weighted inner product
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used for sample classification and to cluster samples into groups. These distance matrices are

amenable to quantitative comparison of genetic distance to geographic or environmental dis-

tances, for example using mantel tests or generalised dissimilarity modelling. We show high

concordance between PCAs obtained using SNP data and those using kWIP. It is possible that

population genetic statistics, including FST, could be recovered using kWIP via a genealogical

interpretation of PCA, as is proposed and shown possible for SNP datasets [38].

We have demonstrated the applicability and effectiveness of kWIP using simulations and

several published datasets. Through simulations, we quantify how the novel weighting

improves accuracy over both the unweighted inner product and Mash, specifically in cases

where genetic differentiation or sequencing depth is low (Fig 2). With data from the 3000 rice

genome dataset [33], we reconstruct known relationships between samples and sequencing

runs, such as membership of samples to major genetic groups of Oryza sativa, and the correct

clustering of replicates (Fig 3).

From sequencing reads of a population re-sequencing experiment in Chlamydomonas [34]

we precisely recreate their visualisation of population relatedness (Fig 4). This dataset suited

for comparison because Flowers, et al., had based their analysis not only on variants recovered

by read alignment to the reference genome, but attempted to recover and use additional varia-

tion by assembling leftover reads that did not match the reference into contigs and calling

additional variants between these contigs. This approach, while reducing reference-genome

bias, required extensive sequencing depth to enable de-novo assembly; the authors chose

around 200-fold coverage, which in turn enabled us to assess kWIP’s performance at various

sequencing depths (Fig 5).

Efficient characterisation of complex metagenome samples has traditionally relied on meth-

ods of reduced representation. We show that kWIP is able to detect structure between micro-

bial communities based on 16S rDNA amplicon sequencing data, at least as well as current

practice (Fig 6). It should be possible to apply kWIP to random shotgun sequencing data from

such samples. Also, estimates of complexity and diversity within and between metagenomes

are currently mostly gene based, but could also be made efficiently at the k-mer-level leverag-

ing sketched data structures.

The key innovation of kWIP is the combination of a fixed-sized, probabilistic data structure

(sketch) for counting k-mers with an entropy-weighted inner product as a measure of similar-

ity between samples. By virtue of their fixed size, sketches enable rapid arithmetic operations

on k-mer counts. Sketches enable kWIP to rapidly aggregate across a populations to derive

weights, and to efficiently compute the inner products. These benefits outweigh the possibility

of collisions between k-mers, which in any case have been observed to be rare [27] given

appropriate sketch size. Sketching data structures are commonly used for k-mer counting (for

example Count-Min Sketches [27, 28], and Bloom Filters [39]), but have not been widely

adopted in alignment-free sequence comparison.

Weighting of inner products between sketches allows us to account for non-uniform

information content of each k-mer. kWIPweights by Shannon entropy of presence/absence

frequency across a population. This provides an assumption-free estimate of the information

content of each k-mer. By down-weighting both rare k-mers introduced by rare variants or

sequencing errors, as well as k-mers present in most or all samples, we are reducing the con-

tribution of k-mers that carry less information. It is possible that other weighting functions

that assume various population parameters could provide a more faithful estimate of the

information content of each k-mer. The application of word-specific weighting has prece-

dence in text processing, where it has been used to account for varying importance of words

in a document [40]. However, because we intend kWIP to be used in situations where such
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parameters are either unavailable or potentially inaccurate, we prefer that our weighting is

free of assumptions.

An inner product between k-mer counts has long been used to detect and measure

sequence similarity, and is referred to as the D2 statistic. There have been many derivatives of

the D2 statistic that seek to enhance its accuracy in recreating evolutionary histories (e.g., DS
2
,

and D�
2

[20–22]). kWIP does not attempt to re-create evolutionary histories, but rather esti-

mates the similarity of genetic material as it exists today. This is sufficient and even desirable

for many of kWIP’s intended uses. When validating experimental metadata, one seeks to

establish whether similarity between sequencing runs matches expectations. Particularly for

metagenome samples, where variation can be in both abundance and type of organisms, esti-

mating present variation between sample genome sequences is of importance, separate to how

this variation came to be.

kWIP estimates genetic similarity between sequencing runs. Because kWIP operates refer-

ence- and alignment-free, all genetic material present in the sample, the “hologenome”, will

contribute to the analysis. However, we note that k-mers that are considered undesirable and

chosen to be excluded from the analysis could easily be masked, for example by setting their

weight in the weight vector to zero.

Because kWIPweights k-mers, and hence genome content, based on their frequency in the

population being analysed, these weights change when the population changes. This allows for

iterative workflows: in a first, all inclusive step the large groupings and outliers are detected;

subsequently, subgroups can be analysed with increased resolution.

kWIP is purposefully designed to operate free of assumptions or prior knowledge. It is com-

paring data as presented in the sequencing reads without attempting to reconstruct or approxi-

mate the underlying genomes. One could think of several ways of incorporating additional

knowledge, which may improve kWIP’s power to determine relatedness between underlying

genomes. One could, for example, apply smoothing to the k-mer counts, with the goal of dif-

ferentiating between k-mers that are genuinely not in the genomes of a sample and those that

were not observed due to low coverage and/or stochastic sampling; smoothing is used in natu-

ral language modelling [41].

It is possible that alternative distance functions (e.g., Manhattan distance) over weighted

sketches could improve the performance of kWIP, which currently uses Euclidean distance.

Distance measures defined on presence/absence of items, such as the Jaccard index or the Jac-

card index-based measures used by AAF [18] and mash [19], could also be calculated from

our sketches. It may further prove valuable to explore spaced seeds [13, 16], or alternative met-

rics including those considering inexact matches [42, 43].

Methods that enable rapid verification of genetic resources, such as stock centre accessions

or cell lines, prevent expensive and possibly catastrophic mis-identifications. Such classifica-

tion tasks only require comparison with a set of reference samples rather than computing dis-

tances between all samples. Inner product kernels have been used to classify protein sequences

[43, 44] and kWIP could be adapted to sample classification with tree-like structures of kernels

[42] or sketches [45, 46].

Estimating the genetic relatedness between a broad collection of natural accessions provides

a basis for ecological or functional studies and should be a first step towards solutions in breed-

ing and conservation. In most population level experiments, technical sources of error are

dwarfed by the error from insufficient sampling [47]. This is especially true when rare or cryp-

tic lineages are present, and in conditions of non-random mating where population structure

is substantial. Such population level noise can only be overcome by broad studies with large

numbers of samples, ideally by also merging experiments [48]. When individuals from real-
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world populations are collected, or collated, there is normally non-uniform genetic related-

ness. Initially, one seeks to group samples into more closely related families or more distantly

related populations, to then develop sets for further detailed studies. Genetic outliers can rep-

resent mis-identifications and cryptic species and should be detected and excluded. De novo
sample groupings based on whole genome relatedness also inform the selection of suitable ref-

erence individuals and/or building the necessary reference genome sequences. The initial char-

acterisation process must avoid biases and have minimal per sample cost. The use of kWIP
allows one to base the analysis of diversity among samples on low coverage, whole-genome

sequence data and thus facilitates large, balanced study designs. More broadly, experiments

are condemned to be inconclusive and irreproducible if samples are somehow mislabelled or

misidentified. An initial step in all analyses of genetic or functional variation must involve

the verification of sample identity [6]. This preliminary analysis should preferably use whole-

genome sequence data, be de novo, unbiased, and agnostic to sequencing protocol and technol-

ogy. kWIP is an efficient implementation of such a tool.

Availability and future directions

kWIP is implemented in C++ and licensed under the GNU GPL. Source code and pre-com-

piled executables are available from https://github.com/kdmurray91/kwip. Documentation

and tutorials are available from https://kwip.readthedocs.io. Docker images, Snakemake work-

flows and Jupyter notebooks used to perform all analyses presented here are available online at

https://github.com/kdmurray91/kwip-experiments; the respective software versions are noted

within the repository. When given a population of samples, kWIP performs all pairwise com-

parisons, which scales quadratically with regards to the number of samples (Oðn2Þ), but paral-

lelises pairwise similarity calculations across cores of a multi-threaded computer to ensure fast

operation. Analyses of very large data sets, i.e., beyond 10,000s of samples, will benefit from

further optimisation to the implementation of kWIP, including parallelisation across distrib-

uted memory systems with MPI. For each pairwise comparison, the two sketches and the

weight vector must fit in main memory. This limits the size of the sketches and the number of

pairwise comparisons that will run efficiently in parallel on a given node.

Materials and methods

We demonstrate kWIP’s performance with both real and simulated datasets. With simulations

we quantify the performance of kWIP. To demonstrate the utility of kWIP in real-world,

low-coverage, large-scale population genomics datasets, we analyse data from the 3000 Rice

Genomes Project [32, 33]. To show that kWIP estimates genetic similarity as well as current

best practice SNP-based methods, we re-analysed a population genomics study on 20 strains of

Chlamydomonas reinhardtii [34] with kWIP and compare our result to the published results.

Lastly, using data from a study on root-associated microbiomes of rice [35], we show that

kWIP is able to separate microbial communities from 16S rDNA amplicon data at least as well

as current best-practice methods in metagenomics.

We provide all information necessary to reproduce our work: the kWIP analyses performed

here are implemented in Snakemake workflows [49], which describe all steps and software

parameters; random seeds have been fixed where necessary. All downstream analyses are avail-

able as Jupyter notebooks [50, 51]. Both the Snakemake workflows and Jupyter notebooks are

available online at https://github.com/kdmurray91/kwip-experiments; the respective software

versions are noted within this repository.
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Simulations

We simulated several datasets to empirically quantify the performance of kWIP. Twenty popu-

lations with 12 individuals each were simulated using scrm [52]. Branch lengths within each

population were normalised such that the mean pairwise genetic distance (π) was equal.

Branch lengths were then scaled over a range of π (between 0.001 and 0.2) to test the effect of

mean pairwise genetic distance on accuracy. Genome sequences of 1 Mbp genomes were sim-

ulated with DAWG2 [53] and from those short read data for three replicate sequencing runs

per individual were generated at various mean coverages (between 1- and 128-fold) using

Mason2 [54]. We attempted to emulate the reality of sequencing experiments by introducing

random variation in read numbers between replicate runs (coefficient of variation of 0.3).

These simulated sequencing runs were then used to estimate genetic similarity with kWIP and

mash [19]. For analysis with kWIPwe used khmer to hash k-mers of length 20 into sketches

with 107 bins. We estimated genetic similarity with kWIP, using the weighted (“WIP”) and

unweighted (“IP”) metrics. On the same data we performed two analyses with Mash, counting

20-mers into sketches of size 104. For one analysis, we invoked the abundance filter within

mash sketch such that only k-mers observed at least twice were considered (“Mash (AF)”),

whereas the other analysis considered all k-mers regardless of abundance (“Mash”).

The performance of our metrics was measured relative to the true pairwise distances

between the simulated samples. The true distance matrix between samples was calculated from

the simulated, aligned sample genomes (which DAWG2 produces) with scikit-bio. Sam-

ple-wise distances were replicated three times to allow comparison to the distances obtained

from the three simulated sequencing runs. Performance was calculated as Spearman’s rank

correlation (ρ) between all pairwise distances using scipy [55].

Datasets

With several published datasets we demonstrate the performance and utility of kWIP in real-

world scenarios. In all cases, sequence data files for sequencing runs were obtained from the

NCBI Short Read Archive using sra-py [56]. Reads were extracted using the SRA toolkit to

FASTQ files. Low base quality regions were removed using sickle [57] in single-end mode.

Counting of k-mers into count files (sketches) was performed using the load-into-
counting.py script of khmer. Genetic similarity was estimated using kWIP, with the WIP

and IP metrics.

To assess how well kWIP recovers replicate samples and known sample hierarchies at low

sequencing coverage, we turned to publicly available sequence data from the 3000 Rice

Genomes project [32, 33]. Samples of the 3000 Rice Genomes project had been sequenced on

the Illumina HiSeq2000 platform with technical replicates of individual sequencing libraries

split between 6 or more sequencing lanes [32, 33]. Furthermore, there is a rather strong subdi-

vision of rice (Oryza sativa) into subgroups. We compiled 100 sets of 96 runs, i.e., for each set

we chose 16 samples with 6 replicate runs. We ensured that 8 samples each were described by

[32] as belonging to the Indica and Japonica subgroups of O. sativa. We estimated the genetic

similarity between runs in each of these 100 sets with kWIP. The true distances between the

different runs in the 3000 rice datasets are not known, but a topology and sample hierarchy

can be inferred from the metadata. We hence assessed the performance of kWIP in accurately

clustering replicates and recovering population structure against a mock distance matrix that

reflects the expected topology. We created a distance matrix in which each run had a distance

of zero to itself, a distance of 1 to each of its technical replicates (i.e., the other sequencing runs

belonging to the same sample), a distance of 2 to each run from other samples in the same rice

group (Indica or Japonica), and a distance of 4 to each run from a sample belonging to the
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respective other rice group. We then used scipy to calculate Spearman’s rank correlation

between this mock matrix and each distance matrix obtained from real data using kWIP. A

paired Student’s t-test was performed between the estimates of relatedness from the WIP and

IP metrics with the t.test function in R. We used hierarchical clustering to visualise these

relationships, performed in R with the hclust function.

We use whole genome sequencing data on 20 strains of Chlamydomonas reinhardtii [34] to

demonstrate that kWIP is able to detect population structure in a real-world dataset and to

examine the effect of sample sequencing depth (coverage) on accuracy of kWIP. Genetic relat-

edness between the 20 Chlamydomonas reinhardtii samples from this study was estimated with

kWIP using the WIP metric. Classic Multi-dimensional Scaling (MDS) of the kWIP distance

matrix was performed using the cmdscale function in R. For Euclidean distance matrices,

MDS is equivalent to PCA [58]. We compare our MDS results with the principal component

analysis (PCA) decomposition of SNP genotypes calculated with function snpgdsPCA
in SNPrelate [37], working from a VCF file provided by Flowers et al. [34]. From the afore-

mentioned SNP data we calculated genome-wide average identity-by-state (IBS) with the

snpgdsIBS function in SNPrelate [37]. Rank correlation between kWIP distances and 1-IBS

was calculated with function cor in R [59].

We examined the effect of mean sequencing depth (coverage) on the accuracy of kWIP by

random sub-sampling from the sequencing data of each sample. We sub-sampled to coverages

of between 0.01- and 200-fold average genome coverage (0.01, 0.1, 0.5, 1, 2, 4, 8, 12, 15, 25, 50,

75, 100, 150, 200x) across samples using the sample command of seqtk [60]. We attempted

to preserve the coefficient of variation in read numbers that existed in the original dataset

(0.12) by sampling a random number of reads from the appropriate normal distribution.

Spearman’s rank correlation (ρ) was used to compare pairwise distances calculated at each

sub-sampled coverage to those from the original dataset with function cor in R [59].

To demonstrate that kWIP can determine the relatedness of samples in a typical metage-

nomic dataset, we used next generation sequencing data from a study on rice root associated

microbiomes [35] representing 16S rDNA amplicons from soil and root samples. Relatedness

between samples was estimated using kWIPwith the WIP metric, and MDS was performed as

above.
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