A High Resolution
Performance Monitoring
Software on the Pentium

Ong Cheng Soon*, Fadhli Wong Mohd Hasan Wong™*, Lai Weng Kin*

* Software Lab, MIMOS Berhad
Jai@mimos.my| ksong@mimos.my|
** Dept of Electrical & Computer, IUM
fadw@yahoo.com

Abstract: Measuring time accurately and precisely is essential for many applications in this
modern era. Often, specialized and expensive hardware or software devices may be needed to
obtain a high degree of accuracy. This paper proposes a time measuring performance-monitoring
software, which is cost effective and accurate on the most ubiquitous of platforms, a Windows
based PC. It utilises features of the Intel Pentium chip set to produce a high resolution and
accurate measurement of the time period between events. Various experiments investigating the
performance of the system were conducted, and the results of the experiments are discussed.

Keywords: Timers, Personal Computer (PC), High Resolution, Accurate, Pentium, Performance Monitoring

I INTRODUCTION

The history of electrical time keeping had existed since the first invention, in 1335,
of a mechanical clock in Milan [1]. By 1889, a clock was produced, which had one
pendulum swinging freely and another to control the clock mechanism that kept
time to the accuracy of 1 second per year. This design of clock system was used
all over the world until it gave way to the emergence of quartz crystal clock by
1942. Improvements in electronic technology enabled quartz clocks to become
smaller. By 1961, portable quartz clocks were being produced for navigation
purposes and today, quartz crystals are found in almost all timing devices ranging
from a simple wrist watch to microchips and controllers found in electronic
devices and systems.

It would have been difficult for our forefathers to imagine that we need to measure
time so accurately but it is essential for many aspects of modern life, which we
often take for granted. Modern navigation systems, mobile telephones, nuclear
physics, real time measurement and automation, performance monitoring, digital
television and many industrial and commercial activities need a high level of
accuracy. Accuracy and precision are the main considerations when developing
and designing a timing system. The level of accuracy and precision often
depends on the type of time measurement or monitoring involved.

51

mailto:lai@mimos.my
mailto:csong@mimos.my

While a simple time keeping device such as a pendulum can be used to keep
track of date and time, a stopwatch will need resolution of milliseconds (ms),
testing software or network performance might need accuracy down to
microseconds (us). Higher resolution of timing devices will be needed in areas
such as nuclear physics where accuracy of nanoseconds (ns) and picoseconds
(ps) are required. Figure 1 depicts the various applications and fields with
different need of timing resolutions. Different methodologies and approaches of
time measurement apply to different systems. For example, a program using built-
in functions (Appendix A) of high-level languages that utilizes the clock system in
a personal computer (PC) can be designed to measure the performance of a
network system with accuracy of milliseconds. Specially designed external
hardware may be used when higher resolution in the range of ns or ps is needed.

microseconds, hanoseconds...

Fig 1: Samples of applications with different timing resolutions

In this research paper, the various stages of design and development of a high
resolution Pentium based performance-monitoring software are discussed. The
main usage of this system would be timing of instruction codes for optimization of
software run-time, and real time measurement and control. In Section Il, the
sources of hardware timing system in a PC will be introduced. Section Il will
highlight some of the important issues and considerations taken into account
when developing the software. The experimental results and analysis of the
proposed software system will be reported in Section IV and a brief summary and
conclusion are discussed in Section V.

52

Il PC-BASED TIME MEASUREMENTS

A. Sources of Hardware Timing System

There are three main sources of hardware timing system that can be derived from
the computer system namely the Intel 8253/8254 counter/timer chip (CTC) form
the IBM PC family, the real time clock (RTC) - (Figure 2) and the processor itself.

The first option for timing is to use the CTC. The frequency of the CTC depends
on the size and cutting of the quartz crystal. Cutting crystals of quartz in different
ways can make them to vibrate at almost any frequency [1]. The standard
frequency of 14.31818 MHz was firstly introduced by IBM and this frequency has
been used in every PC’s system clock ever since. The 14.31818 MHz system
clock is then divided by 12 to give a 1.193182 MHz clock (period is 0.8381 us)
which clocks the three channels of the 8253/8254 counter/timer chip (CTC) [2,3].
The CTC, then divides this frequency to lower frequencies of 18.2065 Hz using
programmable divisors (a 16-bit counter), and produces three output signals. It is
possible to read the actual count in progress in the CTC. In combination with the
tick count variable, this can give an absolute time value, in units of 0.8381 us, for
time stamping, elapsed time calculation, etc.

r ——————————— 1
CTC ! |
Software interface
8253/8254 CTC (| (ports 40h - 43h)
14.31818 MHz
| A e L e

5 F Channel 1 }74‘ T F-F }H Refresh
Divide by 12 datect
Channel 2 Y To PPl or
1.19318166666... MHz B I read-back

!
!
!
I L
!
!
!

AND Speaker equivalent
I data
_________ — o - Timer 2
gate
r __________ Speaker
RTC | 32768 Hz - | | softwars interface

crystal [(ports 70h, 71h)
| —| RTC/ICMOS I
Backup

battery 1. L1 RS (int 70h)

MAIN TIMING SOURCES ON THE PC
Figure 2 (RTC and CTC timer)

The Basic Input Output System (BIOS) tick count variable is a 32-bit unsigned
long word or DWORD, stored at the lower memory address 0040:006C (can also
be addressed as 0000:046C), maintained by the BIOS's (interrupt 8) handler. It

53

contains the number of timer ticks (units of 54.9254 ms) since midnight, in the
current day. The maximum value in this variable is 1800AF hex, so only the
bottom 21 bits can ever be nonzero.

The other option for timing is to use the Real Time Clock that is also called
RTC/RAM or CMOS. A Motorola MC146818 or compatible contains real-time
date and time registers and battery-backed-up storage for BIOS parameters
(CMOS). It was introduced with the IBM PC/AT machine, and all hardware
compatible ATs and newer machines have one. The RTC is completely
independent of the CTC. It uses a 32.768 kHz watch crystal for timekeeping and
has a DC battery to maintain its operation when the computer is turned off. It can
be used to generate a periodic interrupt, usually at 1024 Hz (1024 interrupts per
second).

The third option is to use the processor itself. Beginning with the Pentium®
processor, Intel processors (Pentium | 150 MHz and higher) allow the
programmer to access a time-stamp counter [4]. The time-stamp counter keeps
an accurate count of every cycle that occurs on the processor. The Intel time-
stamp counter is a 64-bit MSR (model specific register) that is incremented at
every clock cycle, (low 32bits will not overflow for seconds; full 64bits will not
overflow for centuries). On reset, the time-stamp counter is set to zero. To access
this counter, programmers can use the RDTSC (read time-stamp counter)
instruction.

This paper will emphasize on the usage of the Intel time stamp counter as the
timing system for an accurate timing system for performance monitoring. The
reasons for choosing this time stamp counter as the timer for our system are as
follows:

a. Resolution
= Intel time stamp counter supports higher resolution that is only
dependent on the processor itself. It provides at least a resolution of

6.6667 ns for a 150 MHz processor compared to the CTC, which only
allows a maximum of 0.8381 pus.

b. Simplicity
= Programming a clock system via CTC and RTC needs a lot of interrupt
handling processes and the exact address and register of the clock tick
storage has to be known.
c. Portability
= Different systems and architectures have different interrupts and

register usage. A piece of timing software developed on the
experimental system might not be applicable to other systems.

54

B. Timing Methodologies

There are three basic approaches to timing [2]. Often two approaches may be
used simultaneously to provide an accurate measurement.

= ABSOLUTE TIME REFERENCE
A function may be written for any program that returns a value
representing the absolute time, with units and resolution of one tick
(54.9254 ms), or 977 us (the RTC regular interrupt rate), or one CTC
clock (0.8381 us), or one clock cycle (Intel RDTSC).

= RELATIVE TIME REFERENCE
We may use the CTC to measure short time duration, for example to
generate a short pulse on an 1/O port pin or measure an external signal.

= REGULAR INTERRUPTS
An interrupt handler may be called at regular (or sometimes, irregular)
intervals, e.g. the default rate of once every 54.9254 ms, or 1024 times
per second using the RTC, or at a user-selectable rate. This user
selectable rate can be achieved by reprograming the CTC. The
interrupt handler can perform operations in the background and/or
maintain an absolute time variable.

The Intel time stamp counter can be used to measure the absolute or relative
time. It has a very high resolution that depends on the speed of the processor.
The details will be explained in later sections.

M. PENTIUM-BASED SYSTEM

A. Intel Pentium Time Stamp Counter

Historically, the time stamp counter has been used for measuring code
performance. One such case occurs when a very fine cycle measurement is
needed for a section of the code. For example, in the case of optimizing the
software run-time, any sets of instructions may be measured to find out the
number of cycles it takes. Another use is to get an average time estimate for a
function or section of code.

The function call of time stamp counter [4], will return a value in number of cycles.
For example, one hundred million cycles on a 100 MHz processor is equivalent to
one second of real time, while the same number of cycles on a 200 MHz
processor is only one-half second of real time. Thus, comparing cycle counts only
makes sense on processors of the same speed. Obviously, to compare
processors of different speeds, the cycle counts should be converted into time
units, where:

55

Number of seconds = number of cycles / frequency

Since the system time stamp counter returns the number of cycles, high
resolution can be obtained. For a 200MHz-speed processor, it will result in an
accuracy of 50ns.

B. Pentium-Based Performance Monitoring Software

Using an instruction from the Intel instruction set called RDTSC, Read Time
Stamp, a program can be written to tap into the processor counter. To be able to
compare measurements between different systems, results obtained must be
converted from number of cycles into real time. Hence, the speed of the
processor has to be known before hand. The program that had been developed
will firstly determine the processor’s speed. It will then multiply the number of
cycles obtained with the time taken for 1 cycle and gives the real time in seconds.
With this calibration, the program can be used on different PCs with different Intel
processor chips without the user having to provide the processor speed manually.
A flowchart depicting the steps taken in our system is shown in Figure 3.

Initialized program
I \
h |
Program measures P
— repare event

processor speed I » I \
\
v

Start counter when
event begins

Stop counter when
event stops

Converts time difference
between start and stop to

real time in seconds

Figure 3: Flow Chart for Time Measuring of Two Events

Interrupts, pre-loading cache, inserting and executing instructions that will disrupt
cache and buffers have to be considered. These factors may cause the measured

56

time to vary non-deterministically from the correct time. In the design of the
system, we had also considered buffer and cache clearing where experiments
had shown some inaccuracies occurring if those factors are neglected.

System interrupts may be immobilized by using the CLI instruction to disable all
interrupts. Note that after issuing a CLI, the machine (mouse, keyboard, etc.) will
be frozen until STl is issued, or until program flow returns to the operating system,
(OS). Ideally, this will give more accurate readings. The enable/disable of
interrupts are totally dependent on the nature of the measurements being
conducted. For example, if the performances of two different software are being
examined, all interrupt can be disabled until the process has complete.

However, if the time measurement concerned is based upon external inputs to
signal start and completion, not all interrupts are allowed to be disabled. For
example if the timing system is being applied to measuring the time differences
between two keystrokes, the keyboard must not be disabled.

Unfortunately, without disabling all interrupts, the results may be inaccurate. The
errors can be due to system interrupts (from OS task switching, etc) that happens
while the program is running. Then again, the system interrupts will take only
dozens of cycle. If a 150Mhz processor is used, a dozen cycles will yield 80ns.
Thus, for applications that need accuracy in the range of us and below, an error in
the range of hundreds of nanoseconds is acceptable.

The final version of the program is tested using an external device as a
benchmark for the system’s accuracy.

IV. TESTING AND VERIFICATION

The accuracy of the timing system developed was verified through an external
frequency source. The external source can be either a clock controlled from a
high quality crystal in a temperature-controlled environment or something derived
from an external clock source (such as frequency generators or radio time
signals, etc.), that provides a signal into the input port (parallel, serial port, etc.),
which can generate an interrupt.

This approach was chosen mainly because a comparison can be conducted
between the software and benchmarked against a highly reliable external
frequency source (refer to Figure 4). A 15MHz Function/Arbitrary Waveform
Generator (Hewlett Packard 33120A) was used as an external signal source. The
signal generated was fed into the system via the parallel port. The software was
used to measure the time for every cycle and the results will be compare with the
frequency generated. The experiment was conducted in room temperature under
normal conditions. The speed of the processor used was Intel Pentium 200 MHz,
with 64 MB SDRAM running in Windows 95 mode.

57

Frequency generator
(1,10,100,1k,10k 100k Hz)

Figure 4: Measuring signal generated by waveform generator

The testing was done with frequencies of 1, 10, 25, 50, 100, 1k, 10k, 100k and
1M Hz. Each frequency testing was evaluated for 1000 cycles that will give a total
of 1000 measurements of data. The results obtained are plotted into a histogram
with 50 classes against the number of samples. An example of the result is shown
in Figure 5(a). As shown, the maximum value obtained was 0.0099994s and the
minimum value was 0.0000069s with 50-width range of 0.0099926s. 98% of the
data are within 2% deviation from the actual signal of the frequency generator
while 2% of the data are in the extreme regions.

Observations have been made regarding the anomalies (data result with
difference of 3 orders of magnitude) that occur, at the beginning of the
measurement. Thus, the program has been modified to start off with clearing the
buffers and cache repeatedly for about a second before timing begins. This
decreases the occurrence of anomalies greatly but did not prevent them from
occurring at all. This may be seen in Figure 5 (b).

50Hz Signal Measured 50Hz Signal Measured
With 200Mhz Processor With 200Mhz Processor
900 - 1000-
800 9004
8 700- @ 800
g oo 2 o]
5 o 5 o
qa 300 qa 400
1 300
S 200 S 20
100+ 100+
0- 0-
<0.0098 0.0098 0.0099 <0.0098 0.0098 0.0099
Time in Seconds Time in Seconds
Figure 5 (a). Without buffer, cache clearing with expected Figure 5 (b). With buffer, cache clearing with expected

value to be 0.010 sec. Max = 0.0099994 sec, Min =
0.0000069 sec 0.0089895 sec

58

value of 0.010 sec. Max = 0.0099992 sec, Min =

50Hz Signal Measured With 2Z00Mhz Processor
1000 -
SO0
=)
= sm
= 400
=
200
|:|.
=0.00%3 0o 0.00e9
Time Eeconds)
W ithout buffer,cache clearing With buffer,cache clearing
Mgz = 0,0033994 cac Mgz = 0, 0099992 sac
Mlin = 0. 0000069 sec Min = 0. 0039595 sec

Figure 6: A comparison of results with and without cache clearing

V. SUMMARY AND CONCLUSION

Based on a literature search, we found that there is little research being
conducted to prove the accuracy of the PC clock systems. Most applications
could either settle for a low resolution (0.1 seconds) or needs an external timing
device for extremely high resolution and accuracy [1]. By utilizing the PC clock
system described here, certain real-time software performance and
measurements can be monitored cost effectively without compromising its
accuracy and reliability.

In this investigation, the Intel Pentium Time Stamp Counter has been found to be
able to generate timing signals within a + 99% accuracy in the range of 50Hz and
below. Ideally, the accuracy of the system can be found within the range of
nanoseconds or more. Nevertheless, there are still opportunities for fine-tuning
and debugging to improve it. Additional testing can be carried out and comparison
between systems using the CTC and RTC can be done. Further research can be
done to find and eliminate the cause of anomalies that appear in the system. The
accuracy in other higher regions of frequencies can also be explored.

In conclusion, we have developed an accurate and reliable software based timing
system, which operates in a Windows environment. This is an extremely portable

system, which can be used on most Pentium PCs for many real-time
performance-monitoring applications.

ACKNOWLEDGEMENTS

We wish to thank Encik Rahadi from Real-Time Lab, MIMOS Berhad for helping
us to set up the experiment.

59

REFERENCES

[1] The Science Museum, “Time Measurement — Atomic Clocks”,
http://www.nmsi.ac.uk/collections/exhiblets/atomclock/before.htm |

[2] Kris Heidenstrom, “FAQ / Application notes: Timing on the PC family under
DOS’, http://home.clear.net.nz/pages/kheidens

[3] Kenneth L. Short, “Microprocessors and Programmed Logic”, Prentice Hall,

1988.
[4] Intel’s Developer Site, http://www.developer.intel.com
APPENDIX A

Some normal built in time function supported by C and C++.

1. The clock function tells how much processor time the calling process has
used. The time in seconds is approximated by dividing the clock return value
by the value of the CLOCKS_PER_SEC constant. In other words, clock
returns the number of processor timer ticks that have elapsed. A timer tick is
approximately equal to 1/CLOCKS_PER_SEC second. In versions of
Microsoft C before 6.0, the CLOCKS_PER_SEC constant was called
CLK_TCK.

2. The time function returns the number of seconds elapsed since midnight
(00:00:00), January 1, 1970, coordinated universal time, according to the
system clock. The return value is stored in the location given by timer. This
parameter may be NULL, in which case the return value is not stored.

60

mailto:lai@mimos.my

	INTRODUCTION
	PC-BASED TIME MEASUREMENTS
	Sources of Hardware Timing System
	a. Resolution
	b. Simplicity
	c. Portability

	Timing Methodologies

	PENTIUM-BASED SYSTEM
	Pentium-Based Performance Monitoring Software

	TESTING AND VERIFICATION
	SUMMARY AND CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES
	APPENDIX A

