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Abstract

We consider the problem of choosing a kernel suitable for estimation
using a Gaussian Process estimator or a Support Vector Machine. A
novel solution is presented which involves defining a Reproducing Ker-
nel Hilbert Space on the space of kernels itself. By utilizing an analog
of the classical representer theorem, the problem of choosing a kernel
from a parameterized family of kernels (e.g. of varying width) is reduced
to a statistical estimation problem akin to the problem of minimizing a
regularized risk functional. Various classical settings for model or kernel
selection are special cases of our framework.

1 Introduction

Choosing suitable kernel functions for estimation using Gaussian Processes and Support
Vector Machines is an important step in the inference process. To date, there are few if
any systematic techniques to assist in this choice. Even the restricted problem of choosing
the “width” of a parameterized family of kernels (e.g. Gaussian) has not had a simple and
elegant solution.
A recent development [1] which solves the above problem in a restricted sense involves
the use of semidefinite programming to learn an arbitrary positive semidefinite matrixK,
subject to minimization of criteria such as the kernel target alignment [1], the maximum of
the posterior probability [2], the minimization of a learning-theoretical bound [3], or subject
to cross-validation settings [4]. The restriction mentioned is that the methods work with the
kernel matrix, rather than the kernel itself. Furthermore, whilst demonstrably improving the
performance of estimators to some degree, they require clever parameterization and design
to make the method work in the particular situations. There are still no general principles to
guide the choice of a) which family of kernels to choose, b) efficient parameterizations over
this space, and c) suitable penalty terms to combat overfitting. (The last point is particularly
an issue when we have a very large set of semidefinite matrices at our disposal).
Whilst not yet providing a complete solution to these problems, this paper presents a frame-
work that allows the optimization within a parameterized family relatively simply, and cru-
cially, intrinsically captures the tradeoff between the size of the family of kernels and the
sample size available. Furthermore, the solution presentedis for optimizing kernels them-
selves, rather than the kernel matrix as in [1]. Other approaches on learning the kernel
include using boosting [5] and by bounding the Rademacher complexity [6].



Outline of the Paper We show (Section 2) that for most kernel-based learning methods
there exists a functional, thequality functional1, which plays a similar role to the empiri-
cal risk functional, and that subsequently (Section 3) the introduction of a kernel on ker-
nels, a so-called hyperkernel, in conjunction with regularization on the Reproducing Ker-
nel Hilbert Space formed on kernels leads to a systematic way of parameterizing function
classes whilst managing overfitting. We give several examples of hyperkernels (Section 4)
and show (Section 5) how they can be used practically. Due to space constraints we only
consider Support Vector classification.

2 Quality Functionals

Let Xtrain := {x1, . . . , xm} denote the set of training data andYtrain := {y1, . . . , ym} the
set of corresponding labels, jointly drawn iid from some probability distributionP (x, y)
onX ×Y. Furthermore, letXtest andYtest denote the corresponding test sets (drawn from
the sameP (x, y)). Let X := Xtrain ∪Xtest andY := Ytrain ∪ Ytest.
We introduce a new class of functionalsQ on data which we callquality functionals. Their
purpose is to indicate, given a kernelk and the training data(Xtrain, Ytrain), how suitable
the kernel is for explaining the training data.

Definition 1 (Empirical Quality Functional) Given a kernelk, and dataX, Y , define
Qemp[k,X, Y ] to be anempirical quality functionalif it depends onk only viak(xi, xj)
wherexi, xj ∈ X; i.e. if there exists a functionq such thatQemp[k,X, Y ] = q(K, X, Y )
whereK = [k(xi, xj)]i,j is thekernel matrix.

The basic idea is thatQemp could be used to adaptk in a manner such thatQemp is
minimized, based on thissingledatasetX, Y . Given a sufficiently rich classK of ker-
nels k it is in general possible to find a kernelk∗ ∈ K that attains arbitrarily small
values ofQemp[k∗, Xtrain, Ytrain] for any training set. However, it is very unlikely that
Qemp[k∗, Xtest, Ytest] would be similarly small in general. Analogously to the standard
methods of statistical learning theory, we aim to minimize theexpectedquality functional:

Definition 2 (Expected Quality Functional) SupposeQemp is an empirical quality func-
tional. Then Q[k] := EX,Y [Qemp[k, X, Y ]] (1)

is the expected quality functional, where the expectation is taken with respect toPm.

Note the similarity betweenQemp[k,X, Y ] and the empirical risk of an estimator
Remp[f,X, Y ] = 1

m

∑m
i=1 c(xi, yi, f(xi)) (wherec is a suitable loss function): in both

cases we compute the value of a functional which depends on some sampleX, Y drawn
from P (x, y) and a function, and in both cases we have

Q[k] = EX,Y [Qemp[k,X, Y ]] andR[f ] = EX,Y [Remp[f,X, Y ]] . (2)

HereR[f ] is known as the expected risk. We now present some examples of quality func-
tionals, and derive their exact minimizers whenever possible.

Example 1 (Kernel Target Alignment) This quality functional was introduced in [7] to
assess the “alignment” of a kernel with training labels. It is defined by

Qalignment
emp [k,Xtrain, Ytrain] := 1− y>Ky

‖y‖22‖K‖2
, (3)

wherey denotes the vector of elements ofYtrain, ‖y‖2 denotes thè2 norm ofy, and‖K‖2
is the Frobenius norm:‖K‖22 := trKK> =

∑
i,j K2

ij . Note that the definition in [7] looks
somewhat different, yet it is algebraically identical to (3).

1We actually meanbadness, since we are minimizing this functional.



By decomposingK into its eigensystem, one can see that (3) is minimized ifK = yy>, in
which case

Qalignment
emp [k∗, Xtrain, Ytrain] = 1− y>yy>y

‖y‖22‖yy>‖2
= 1− ‖y‖42

‖y‖22‖y‖22
= 0. (4)

It is clear that one cannot expect thatQalignment
emp [k∗, Xtrain, Ytrain] = 0 for data other than

the set chosen to determinek∗.

Example 2 (Regularized Risk Functional) If H is the Reproducing Kernel Hilbert Space
(RKHS) associated with the kernelk, the regularized risk functionals have the form

Rreg[f,Xtrain, Ytrain] :=
1
m

m∑
i=1

c(xi, yi, f(xi)) +
λ

2
‖f‖2H, (5)

where‖f‖2H is the RKHS norm off . By virtue of the representer theorem (see e.g., [4, 8])
we know that the minimizer overf ∈ H of (5) can be written as a kernel expansion.
For a given lossc this leads to the quality functional

Qregrisk
emp [k,Xtrain, Ytrain] := min

α∈Rm

[
1
m

m∑
i=1

c(xi, yi, [Kα]i) +
λ

2
α>Kα

]
. (6)

The minimizer of (6) is more difficult to find, since we have to carry out a double mini-
mization overK andα. First, note that forK = βyy> andα = 1

β‖y‖2 y, Kα = y and

α>Kα = β−1. ThusQregrisk
emp [k, Xtrain, Ytrain] = λ

2β . For sufficiently largeβ, we can

makeQregrisk
emp [k, Xtrain, Ytrain] arbitrarily close to0.

Even if we disallow settingK to zero, by settingtrK = 1, we can determine the minimum
of (6) as follows. SetK = 1

‖z‖2 zz>, wherez ∈ Rm, andα = z. ThenKα = z and so

1
m

m∑
i=1

c(xi, yi, [Kα]i) +
λ

2
α>Kα =

m∑
i=1

c(xi, yi, zi) +
λ

2
‖z‖22.

Choosing eachzi = argminζ c(xi, yi, ζ) + λ
2 ζ2 yields the minimum with respect toz. The

proof thatK is theglobalminimizer of this quality functional is omitted for brevity.

Example 3 (Negative Log-Posterior)In Gaussian processes, this functional is similar to
Rreg[f,Xtrain, Ytrain] since it includes a regularization term (the negative log prior) and a
loss term (the negative log-likelihood). In addition, it also includes the log-determinant of
K which measures the size of the space spanned byK. The quality functional is

Qlogpost
emp [k, Xtrain, Ytrain] := min

f∈Rm

[
−

m∑
i=1

log p(yi|xi, fi) +
1
2
f>K−1f +

1
2

log |K|

]
(7)

Note that anyK which does not have full rank will send (7) to−∞, and thus such cases
need to be excluded. When we fix|K| = 1, to exclude the above case, we can set

K = β‖y‖−2yy> + β−
1

m−1 (1− ‖y‖−2yy>) (8)
which leads to|K| = 1. Under the assumption that the minimum of− log p(yi, xi, fi)
with respect tofi is attained atfi = yi, we can see thatβ → ∞ still leads to the overall
minimum ofQlogpost

emp [k,Xtrain, Ytrain].

Other examples, such as cross-validation, leave-one-out estimators, the Luckiness frame-
work, the Radius-Margin bound also have empirical quality functionals which can be arbi-
trarily minimized.
The above examples illustrate how many existing methods for assessing the quality of a
kernel fit within the quality functional framework. We also saw that given a rich enough
class of kernelsK, optimization ofQemp overK would result in a kernel that would be
useless for prediction purposes. This is yet another example of the danger of optimizing
too much — there is (still) no free lunch.



3 A Hyper Reproducing Kernel Hilbert Space
We now introduce a method for optimizing quality functionals in an effective way. The
method we propose involves the introduction of a Reproducing Kernel Hilbert Spaceon
the kernelk itself — a “Hyper”-RKHS. We begin with the basic properties of an RKHS
(see Def 2.9 and Thm 4.2 in [8] and citations for more details).

Definition 3 (Reproducing Kernel Hilbert Space) LetX be a nonempty set (often called
the index set) and denote byH a Hilbert space of functionsf : X → R. ThenH is
called a reproducing kernel Hilbert space endowed with the dot product〈·, ·〉 (and the
norm‖f‖ :=

√
〈f, f〉) if there exists a functionk : X × X → R satisfying,x, x′ ∈ X :

1. k has the reproducing property〈f, k(x, ·)〉 = f(x) for all f ∈ H; in particular,
〈k(x, ·), k(x′, ·)〉 = k(x, x′).

2. k spansH, i.e.H = span{k(x, ·)|x ∈ X} whereX is the completion ofX.
The advantage of optimization in an RKHS is that under certain conditions the optimal
solutions can be found as the linear combination of a finite number of basis functions,
regardless of the dimensionality of the spaceH, as can be seen in the theorem below.

Theorem 4 (Representer Theorem)Denote byΩ : [0,∞) → R a strictly monotonic
increasing function, byX a set, and byc : (X × R2)m → R ∪ {∞} an arbitrary loss
function. Then each minimizerf ∈ H of the regularized risk

c ((x1, y1, f(x1)) , . . . , (xm, ym, f(xm))) + Ω (‖f‖H) (9)

admits a representation of the formf(x) =
∑m

i=1 αik(xi, x).

The above definition allows us to define an RKHS on kernelsX × X → R, simply by
introducingX := X × X and by treatingk as functionsk : X → R:

Definition 5 (Hyper Reproducing Kernel Hilbert Space) LetX be a nonempty set and
let X := X × X (the compounded index set). Then the Hilbert spaceH of functions
k : X → R, endowed with a dot product〈·, ·〉 (and the norm‖k‖ =

√
〈k, k〉) is called

a Hyper Reproducing Kernel Hilbert Spaceif there exists ahyperkernelk : X × X → R
with the following properties:

1. k has the reproducing property〈k, k(x, ·)〉 = k(x) for all k ∈ H, in particular,
〈k(x, ·), k(x′, ·)〉 = k(x, x′).

2. k spansH, i.e.H = span{k(x, ·)|x ∈ X}.
3. For any fixedx ∈ X the hyperkernelk is a kernel in its second argument, i.e. for

any fixedx ∈ X , the functionk(x, x′) := k(x, (x, x′)) with x, x′ ∈ X is a kernel.

What distinguishesH from a normal RKHS is the particular form of its index set (X = X 2)
and the additional condition onk to be a kernel in its second argument for any fixed first
argument. This condition somewhat limits the choice of possible kernels. On the other
hand, it allows for simple optimization algorithms which consider kernelsk ∈ H, which
are in the convex cone ofk. Analogously to the definition of the regularized risk functional
(5), we define the regularized quality functional:

Qreg[k,X, Y ] := Qemp[k,X, Y ] +
λs

2
‖k‖2, (10)

whereλs > 0 is a regularization constant and‖k‖2 denotes the RKHS norm inH. Mini-
mization ofQreg is less prone to overfitting than minimizingQemp, since the regularization
term λs

2 ‖k‖
2 effectively controls the complexity of the class of kernels under consideration.

Regularizers other thanλs

2 ‖k‖
2 are also possible. The question arising immediately from

(10) is how to minimize the regularized quality functional efficiently. In the following we
show that the minimum can be found as a linear combination of hyperkernels.



Corollary 6 (Representer Theorem for Hyper-RKHS) LetH be a hyper-RKHS and de-
note byΩ : [0,∞) → R a strictly monotonic increasing function, byX a set, and byQ
an arbitrary quality functional. Then each minimizerk ∈ H of the regularized quality
functional

Q[k, X, Y ] +
λs

2
‖k‖2 (11)

admits a representation of the formk(x, x′) =
m∑

i,j=1

βijk((xi, xj), (x, x′)).

Proof All we need to do is rewrite (11) so that it satisfies the conditions of Theorem 4. Let
xij := (xi, xj). ThenQ[k, X, Y ] has the properties of a loss function, as it only depends
onk via its values atxij . Furthermore,λs

2 ‖k‖
2 is an RKHS regularizer, so the representer

theorem applies and the expansion ofk follows.

This result shows that even though we are optimizing over an entire (potentially infinite
dimensional) Hilbert space of kernels, we are able to find the optimal solution by choosing
among a finite dimensional subspace. The dimension required (m2) is, not surprisingly, sig-
nificantly larger than the number of kernels required in a kernel function expansion which
makes a direct approach possible only for small problems. However, sparse expansion
techniques, such as [9, 8], can be used to make the problem tractable in practice.

4 Examples of Hyperkernels

Having introduced the theoretical basis of the Hyper-RKHS, we need to answer the ques-
tion whether practically usefulk exist which satisfy the conditions of Definition 5. We
address this question by giving a set of general recipes for building such kernels.

Example 4 (Power Series Construction)Denote byk a positive semidefinite kernel, and
byg : R → R a function with positive Taylor expansion coefficientsg(ξ) =

∑∞
i=0 ciξ

i and
convergence radiusR. Then fork2(x, x′) ≤ R we have that

k(x, x′) := g(k(x)k(x′)) =
∞∑

i=0

ci(k(x)k(x′))i (12)

is a hyperkernel: for any fixedx, k(x, (x, x′)) is a sum of kernel functions, hence it is
a kernel itself (sinceki(x, x′) is a kernel ifk is). To show thatk is a kernel, note that
k(x, x′) = 〈Φ(x),Φ(x′)〉, whereΦ(x) := (

√
c0,
√

c1k
1(x),

√
c2k

2(x), . . .).

Example 5 (Harmonic Hyperkernel) A special case of (12) is the harmonic hyperkernel:
Denote byk a kernel withk : X ×X → [0, 1] (e.g., RBF kernels satisfy this property), and
setci := (1− λh)λi

h for some0 < λh < 1. Then we have

k(x, x′) = (1− λh)
∞∑

i=0

(λhk(x)k(x′))i =
1− λh

1− λhk(x)k(x′)
. (13)

Example 6 (Gaussian Harmonic Hyperkernel) For k(x, x′) = exp(−σ2‖x− x′‖2),

k((x, x′), (x′′, x′′′)) =
1− λh

1− λh exp (−σ2(‖x− x′‖2 + ‖x′′ − x′′′‖2))
. (14)

For λh → 1, k converges toδx,x′ ; that is, the expression‖k‖2 converges to the Frobenius
norm ofk onX ×X.



g(ξ) Power series expansion R
exp ξ 1 + 1

1!ξ + . . . + 1
n!ξ

n + . . . ∞

sinh ξ ξ
1! + ξ3

3! + . . . + ξ(2n+1)

(2n+1)! + . . . ∞

cosh ξ 1 + ξ2

2! + . . . + ξ(2n)

(2n)! + . . . ∞

arctanhξ ξ
1 + ξ3

3 + . . . + ξ2n+1

2n+1 + . . . 1

− ln(1− ξ) ξ
1 + ξ2

2 + . . . + ξn

n + . . . 1

Table 1: Examples of Hyperkernels

We can find further hyperkernels,
simply by consulting tables on
power series of functions. Ta-
ble 1 contains a list of suitable
expansions. Recall that expan-
sions such as (12) were mainly
chosen for computational conve-
nience, in particular whenever it
is not clear which particular class
of kernels would be useful for the
expansion.

Example 7 (Explicit Construction) If we know or have a reasonable guess as to which
kernels could be potentially relevant (e.g., a range of scales of kernel width, polynomial
degrees, etc.), we may begin with a set of candidate kernels, sayk1, . . . ,kn and define

k(x, x′) :=
n∑

i=1

ciki(x)ki(x′), ki(x) > 0,∀x. (15)

Clearly k is a hyperkernel, sincek(x, x′) = 〈Φ(x),Φ(x′)〉, where Φ(x) :=
(
√

c1k1(x),
√

c2k2(x), . . . ,
√

cnkn(x)).

5 An Application: Minimization of the Regularized Risk

Recall that in the case of the Regularized Risk functional, the regularized quality optimiza-
tion problem takes on the form

minimize
f∈H,k∈H

1
m

m∑
i=1

c(xi, yi, f(xi)) +
λ

2
‖f‖2H +

λs

2
‖k‖2H. (16)

For f =
∑

i αik(xi, x), the second term‖f‖2H is a linear function ofk. Given a convex
loss functionc, the regularized quality functional (16) is convex ink. The corresponding
regularized quality functional is:

Qregrisk
reg [k,X, Y ] = Qregrisk

emp [k, X, Y ] +
λs

2
‖k‖2H (17)

For fixedk, the problem can be formulated as a constrained minimization problem inf , and
subsequently expressed in terms of the Lagrange multipliersα. However, this minimum
depends onk, and for efficient minimization we would like to compute the derivatives with
respect tok. The following lemma tells us how (it is an extension of a result in [3] and we
omit the proof for brevity):

Lemma 7 Let x ∈ Rm and denote byf(x, θ), ci : Rm → R convex functions, wheref is
parameterized byθ. LetR(θ) be the minimum of the following optimization problem (and
denote byx(θ) its minimizer):

minimize
x∈Rm

f(x, θ) subject toci(x) ≤ 0 for all 1 ≤ i ≤ n. (18)

Then∂j
θR(θ) = Dj

2f(x(θ), θ), wherej ∈ N andD2 denotes the derivative with respect to
the second argument off .

Since the minimizer of (17) can be written as a kernel expansion (by the representer theo-
rem for Hyper-RKHS), the optimal regularized quality functional can be written as (using



the soft margin loss andKijpq := k((xi, xj), (xp, xq)):

Qregrisk
reg [K,α, β,X, Y ] =

1
m

m∑
i=1

max
(
0, 1− yi

m∑
j,p,q=1

αjβpqKijpq

)
(19)

+
λ

2

m∑
i,j,p,q=1

αiαjβpqKijpq +
λ′

2

m∑
i,j,p,q=1

βijβpqKijpq

Minimization of (19) is achieved by alternating between minimization overα for fixed β
(this is a quadratic optimization problem), and subsequently minimization overβ (with
βij ≥ 0 to ensure positivity of the kernel matrix) for fixedα.

Low Rank Approximation While being finite in the number of parameters (despite the
optimization over two possibly infinite dimensional Hilbert spacesH andH), (19) still
presents a formidable optimization problem in practice (we havem2 coefficients forβ).
For an explicit expansion of type (15) we can optimize in the expansion coefficients of
ki(x)ki(x′) directly, which means that we simply have a quality functional with an`2
penalty on the expansion coefficients. Such an approach is recommended if there are few
terms in (15). In the general case (or ifn � m), we resort to a low-rank approximation, as
described in [9, 8]. This means that we pick fromk((xi, xj), ·) with 1 ≤ i, j ≤ m a small
fraction of terms which approximatek onX ×X sufficiently well.

6 Experimental Results and Summary

Experimental Setup To test our claims of kernel adaptation via regularized quality func-
tionals we performed preliminary tests on datasets from the UCI repository (Pima, Iono-
sphere, Wisconsin diagnostic breast cancer) and the USPS database of handwritten digits
(’6’ vs. ’9’). The datasets were split into60% training data and40% test data, except for
the USPS data, where the provided split was used. The experiments were repeated over
200 random 60/40 splits. We deliberately did not attempt to tune parameters and instead
made the following choices uniformly for all four sets:

• The kernel widthσ was set toσ−1 = 100d, whered is the dimensionality of the
data. We deliberately chose a too large value in comparison with the usual rules
of thumb [8] to avoid good default kernels.

• λ was adjusted so that1λm = 100 (that isC = 100 in the Vapnik-style parameter-
ization of SVMs). This has commonly been reported to yield good results.

• λh for the Gaussian Harmonic Hyperkernel was chosen to be0.6 throughout, giv-
ing adequate coverage over various kernel widths in (13) (smallλh focus almost
exclusively on wide kernels,λh close to1 will treat all widths equally).

• The hyperkernel regularization was set toλs = 10−4.

We compared the results with the performance of a generic Support Vector Machine with
the same values chosen forσ andλ and one for whichλ, σ had been hand-tuned using cross
validation.

Results Despite the fact that we did not try to tune the parameters we were able to achieve
highly competitive results as shown in Table 2. It is also worth noticing that the number of
hyperkernels required after a low-rank decomposition of the hyperkernel matrix contained
typically less than 10 hyperkernels, thus rendering the optimization problem not much
more costly than a standard Support Vector Machine (even with a very high quality10−5

approximation ofK) and that after the optimization of (19), typically less than5 were being
used. This dramatically reduced the computational burden.
Using thesamenon-optimized parameters for different data sets we achieved results com-
parable to other recent work on classification such as boosting, optimized SVMs, and kernel
target alignment [10, 11, 7] (note that we use a much smaller part of the data for training:



Rreg Qreg Best in Tuned
Data(size) Train Test Train Test [10, 11] SVM
pima(768) 25.2±2.0 26.2±3.3 22.2±1.4 23.2±2.0 23.5 22.9±2.0

ionosph(351) 13.4±2.0 16.5±3.4 10.9±1.5 13.4±2.4 6.2 6.1±1.9
wdbc(569) 5.7±0.8 5.7±1.3 2.1±0.6 2.7±1.0 3.2 2.5±0.9
usps(1424) 2.1 3.4 1.5 2.8 NA 2.5

Table 2: Training and test error in percent

only 60% rather than90%). Results based onQreg are comparable to hand tuned SVMs
(right most column), except for the ionosphere data. We suspect that this is due to the small
training sample.

Summary and Outlook The regularized quality functional allows the systematic solu-
tion of problems associated with the choice of a kernel. Quality criteria that can be used
include target alignment, regularized risk and the log posterior. The regularization implicit
in our approach allows the control of overfitting that occurs if one optimizes over a too
large a choice of kernels.
A very promising aspect of the current work is that it opens the way to theoretical analyses
of the price one pays by optimizing over a larger setK of kernels. Current and future
research is devoted to working through this analysis and subsequently developing methods
for the design of good hyperkernels.
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