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Abstract

In this paper we show that many kernel meth-
ods can be adapted to deal with indefinite
kernels, that is, kernels which are not posi-
tive semidefinite. They do not satisfy Mer-
cer’s condition and they induce associated
functional spaces called Reproducing Kernel
Krĕın Spaces (RKKS), a generalization of Re-
producing Kernel Hilbert Spaces (RKHS).

Machine learning in RKKS shares many
“nice” properties of learning in RKHS, such
as orthogonality and projection. However,
since the kernels are indefinite, we can no
longer minimize the loss, instead we sta-
bilize it. We show a general representer
theorem for constrained stabilization and
prove generalization bounds by computing
the Rademacher averages of the kernel class.
We list several examples of indefinite kernels
and investigate regularization methods to
solve spline interpolation. Some preliminary
experiments with indefinite kernels for spline
smoothing are reported for truncated spec-
tral factorization, Landweber-Fridman itera-
tions, and MR-II.
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1. Why Non-Positive Kernels?

Almost all current research on kernel methods in ma-
chine learning focuses on functions k(x, x′) which are
positive semidefinite. That is, it focuses on kernels
which satisfy Mercer’s condition and which conse-
quently can be seen as scalar products in some Hilbert
space. See (Vapnik, 1998; Schölkopf & Smola, 2002;
Wahba, 1990) for details.

The purpose of this article is to point out that there is
a much larger class of kernel functions available, which
do not necessarily correspond to a RKHS but which
nonetheless can be used for machine learning. Such
kernels are known as indefinite kernels, as the scalar
product matrix may contain a mix of positive and neg-
ative eigenvalues. There are several motivations for
studying indefinite kernels:

• Testing Mercer’s condition for a given kernel can
be a challenging task which may well lie beyond
the abilities of a practitioner.

• Sometimes functions which can be proven not to
satisfy Mercer’s condition may be of other inter-
est. One such instance is the hyperbolic tangent
kernel k(x, x′) = tanh(〈x, x′〉 − 1) of Neural Net-
works, which is indefinite for any range of param-
eters or dimensions (Smola et al., 2000).

• There have been promising empirical reports on
the use of indefinite kernels (Lin & Lin, 2003).

• In H∞ control applications and discrimination
the cost function can be formulated as the dif-
ference between two quadratic norms (Haasdonk,



2003; Hassibi et al., 1999), corresponding to an
indefinite inner product.

• RKKS theory (concerning function spaces arising
from indefinite kernels) has become a rather active
area in interpolation and approximation theory.

• In recent work on learning the kernel, such as
(Ong & Smola, 2003), the solution is a linear com-
bination of positive semidefinite kernels. How-
ever, an arbitrary linear combination of posi-
tive kernels is not necessarily positive semidefi-
nite (Mary, 2003). While the elements of the as-
sociated vector space of kernels can always be de-
fined as the difference between two positive ker-
nels, what is the functional space associated with
such a kernel?

We will discuss the above issues using topological
spaces similar to Hilbert spaces except for the fact
that the inner product is no longer necessarily pos-
itive. Section 2 defines RKKS and some properties
required in the subsequent derivations. We also give
some examples of indefinite kernels and describe their
spectrum. Section 3 extends Rademacher type gen-
eralization error bounds for learning using indefinite
kernels. Section 4 shows that we can obtain a theorem
similar to the representer theorem in RKHS. However,
we note that there may be practical problems. Sec-
tion 5 describes how we can perform approximation of
the interpolation problem using the spectrum of the
kernel also using iterative methods. It also shows pre-
liminary results on spline regularization.

2. Reproducing Kernel Krein Spaces

Krĕın spaces are indefinite inner product spaces en-
dowed with a Hilbertian topology, yet their inner prod-
uct is no longer positive. Before we delve into defini-
tions and state basic properties of Krĕın spaces, we
give an example:

Example 1 (4 dimensional space-time)
Indefinite spaces were first introduced by Minkowski
for the solution of problems in special relativity. There
the inner product in space-time (x, y, z, t) is given by

〈(x, y, z, t), (x′, y′, z′, t′)〉 = xx′ + yy′ + zz′ − tt′.

Clearly it is not positive. The vector v = (1, 1, 1,
√

3)
belongs to the cone of so-called neutral vectors which
satisfy 〈v, v〉 = 0 (in coordinates x2 +y2 +z2−t2 = 0).
In special relativity this cone is also called the “light
cone,” as it corresponds to the propagation of light
from a point event.

2.1. Krĕın spaces

The above example shows that there are several dif-
ferences between Krĕın spaces and Hilbert spaces. We
now define Krĕın spaces formally. More detailed ex-
positions can be found in (Bognár, 1974; Azizov &
Iokhvidov, 1989). The key difference is the fact that
the inner products are indefinite.

Definition 1 (Inner product) Let K be a vector
space on the scalar field.1 An inner product 〈., .〉K on
K is a bilinear form where for all f, g, h ∈ K, α ∈ R:
• 〈f, g〉K = 〈g, f〉K
• 〈αf + g, h〉K = α〈f, h〉K + 〈g, h〉K
• 〈f, g〉K = 0 for all g ∈ K implies ⇒ f = 0

An inner product is said to be positive if for all f ∈
K we have 〈f, f〉K ≥ 0. It is negative if for all f ∈
K 〈f, f〉K ≤ 0. Otherwise it is called indefinite.

A vector space K embedded with the inner product
〈., .〉K is called an inner product space. Two vectors
f, g of an inner product space are said to be orthogonal
if 〈f, g〉K = 0. Given an inner product, we can define
the associated space.

Definition 2 (Krĕın space) An inner product space
(K, 〈., .〉K) is a Krĕın space if there exist two Hilbert
spaces H+,H− spanning K such that
• All f ∈ K can be decomposed into f = f+ + f−,

where f+ ∈ H+ and f− ∈ H−.
• ∀f, g ∈ K, 〈f, g〉K = 〈f+, g+〉H+ − 〈f−, g−〉H−

This suggests that there is an “associated” Hilbert
space, where the difference in scalar products is re-
placed by a sum:

Definition 3 (Associated Hilbert Space) Let K
be a Krĕın space with decomposition into Hilbert spaces
H+ and H−. Then we denote by K the associated
Hilbert space defined by

K = H+⊕H− hence 〈f, g〉K = 〈f+, g+〉H++〈f−, g−〉H−

Likewise we can introduce the symbol 	 to indicate that

K = H+	H− hence 〈f, g〉K = 〈f+, g+〉H+−〈f−, g−〉H− .

Note that K is the smallest Hilbert space majorizing
the Krĕın space K and one defines the strong topology
on K as the Hilbertian topology of K. The topology
does not depend on the decomposition chosen. Clearly
|〈f, f〉K| 6 ‖f‖2K for all f ∈ K.

1Like Hilbert spaces, Krĕın spaces can be defined on R
or C. We use R in this paper.



K is said to be Pontryagin if it admits a decomposi-
tion with finite dimensional H−, and Minkowski if K
itself is finite dimensional. We will see how Pontryagin
spaces arise naturally when dealing with conditionally
positive definite kernels (see Section 2.4).

For estimation we need to introduce Krĕın spaces on
functions. Let X be the learning domain, and RX the
set of functions from X to R. The evaluation func-
tional tells us the value of a function at a certain point,
and we shall see that the RKKS is a subset of RX

where this functional is continuous.

Definition 4 (Evaluation functional)

Tx : K → R where f 7→ Txf = f(x).

Definition 5 (RKKS) A Krĕın space (K, 〈., .〉K) is a
Reproducing Kernel Krĕın Space (Alpay, 2001, Chap-
ter 7) if K ⊂ RX and the evaluation functional is con-
tinuous on K endowed with its strong topology (that is,
via K).

2.2. From Krĕın spaces to Kernels

We prove an analog to the Moore-Aronszajn theo-
rem (Wahba, 1990), which tells us that for every ker-
nel there is an associated Krĕın space, and for every
RKKS, there is a unique kernel.

Proposition 6 (Reproducing Kernel) Let K be
an RKKS with K = H+ 	H−. Then

1. H+ and H− are RKHS (with kernels k+ and k−),
2. There is a unique symmetric k(x, x′) with k(x, ·) ∈
K such that for all f ∈ K, 〈f, k(x, ·)〉K = f(x),

3. k = k+ − k−.

Proof Since K is a RKKS, the evaluation functional is
continuous with respect to the strong topology. Hence
the associated Hilbert Space K is an RKHS. It fol-
lows that H+ and H−, as Hilbertian subspaces of an
RKHS, are RKHS themselves with kernels k+ and k−
respectively. Let f = f+ + f−. Then Tx(f) is given by

Tx(f) = Tx(f+) + Tx(f−)
= 〈f+, k+(x, ·)〉H+ − 〈f−,−k−(x, ·) 〉H−
= 〈f, k+(x, ·)− k−(x, ·)〉K.

In both lines we exploited the orthogonality of H+

with H−. Clearly k := k+ − k− is symmetric.
Moreover it is unique since the inner product is
non-degenerate.

2.3. From Kernels to Krĕın spaces

Let k be a symmetric real valued function on X 2.

Proposition 7 The following are equivalent (Mary,
2003, Theorem 2.28):
• There exists (at least) one RKKS with kernel k.
• k admits a positive decomposition, that is there

exists two positive kernels k+ and k− such that
k = k+ − k−.

• k is dominated by some positive kernel p (that is,
p− k is a positive kernel).

There is no bijection but a surjection between the set
of RKKS and the set of generalized kernels defined in
the vector space generated out of the cone of positive
kernels.

2.4. Examples and Spectral Properties

We collect several examples of indefinite kernels in Ta-
ble 1 and plot a 2 dimensional example as well as 20
of the eigenvalues with the largest absolute value. We
investigate the spectrum of radial kernels using the
Hankel transform.

The Fourier transform allows one to find the eigenvalue
decomposition of kernels of the form k(x, x′) = κ(x−
x′) by computing the Fourier transform of κ. For x ∈
Rn we have

F [f ](‖ω‖) = ‖ω‖−νHν [rνκ(r)](‖ω‖)

where ν = 1
2n − 1 and Hν is the Hankel transform of

order ν. Table 1 depicts the spectra of these kernels.
Negative values in the Hankel transform correspond
to H−, positive ones to H+. Likewise the decomposi-
tion of k(x, x′) = κ(〈x, x′〉) in terms of associated Leg-
endre polynomials allows one to identify the positive
and negative parts of the Krein space, as the Legendre
polynomials commute with the rotation group.

One common class of translation invariant kernels
which are not positive definite are so-called condition-
ally positive definite (cpd) kernels. A cpd kernel of
order p leads to a positive semidefinite matrix in a
subspace of coefficients orthogonal to polynomials of
order up to p−1. Moreover, in the subspace of (p−1)
degree polynomials, the inner product is typically neg-
ative definite. This means that there is a space of poly-
nomials of degree up to order p− 1 (which constitutes
an up to

(
n+p−2

p−1

)
-dimensional subspace) with negative

inner product. In other words, we are dealing with a
Pontyragin space.

The standard procedure to use such kernels is to
project out the negative component, replace the lat-



Kernel 2D kernel 20 main Eigenvalues Fourier Transform
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)
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σ + c2

Thin plate spline
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σ

2p
ln

(
‖s−t‖2

σ

)

Table 1. Examples of indefinite kernels. Column 2 shows the 2D surface of the kernel with respect to the origin, column
3 shows plots of the 20 eigenvalues with largest magnitude of uniformly spaced data from the interval [−2, 2], column 4
shows plots of the Fourier spectra.

ter by a suitably smoothed estimate in the polyno-
mial subspace and treat the remaining subspace as any
RKHS (Wahba, 1990). Using Krĕın spaces we can use
these kernels directly, without the need to deal with
the polynomial parts separately.

3. Generalization Bounds via
Rademacher Average

An important issue regarding learning algorithms are
their ability to generalize (to give relevant predictions).
This property is obtained when the learning process
considered shows an uniform convergence behavior. In
(Mendelson, 2003) such a result is demonstrated in the
case of RKHS through the control of the Rademacher
average of the class of function considered. Here we

present an adaptation of this proof in the case of Krĕın
spaces. We begin with setting the functional frame-
work for the result.

Let k be a kernel defined on a set X and choose a de-
composition k = k+ − k− where k+ and k− are both
positive kernels. This given decomposition of the ker-
nel can be associated with the RKHS K defined by its
positive kernel k = k+ + k− whose Hilbertian topol-
ogy defines the strong topology of K. We will then
consider the set BK defined as follows:

BK =
{
f ∈ K

∣∣ ‖f+‖2 + ‖f−‖2 = ‖f‖2 ≤ 1
}

Note that in a Krĕın space the norm of a function is the
associated Hilbertian norm and usually ‖f‖2 6= 〈f, f〉K
but always 〈f, f〉K ≤ ‖f‖2.

The Rademacher average of a class of functions F



with respect to a measure µ is defined as follows.
Let x1, . . . , xm ∈ X be i.i.d random variables sam-
pled according to µ. Let εi for i = 1, . . . ,m be
Rademacher random variables, that is variables tak-
ing values {−1,+1} with equal probability.

Definition 8 (Rademacher Average) The
Rademacher average, Rm(F) of a set of functions F
(w.r.t. µ) is defined as

Rm(F) = EµEε
1√
m

sup
f∈F

∣∣∣ m∑
i=1

εif(xi)
∣∣∣

Using the Rademacher average as an estimate of the
“size” of a function class, we can obtain general-
ization error bounds which are also called uniform
convergence or sample complexity bounds (Mendel-
son, 2003, Corollary 3), that is for any ε > 0 and
δ > 0, there is an absolute constant C such that if
m > C

ε2 max{R2
m(J(BK)), log 1

δ }, then,

Pr
(

sup
f∈BK

∣∣∣ 1
m

m∑
i=1

J(f(Xi))− EJ(f)
∣∣∣ ≥ ε

)
≤ δ,

where J(f(x)) denotes the quadratic loss defined as
in (Mendelson, 2003). To get the expected result we
have to show that the Rademacher average is bounded
by a constant independent of the sample size m. To
control the Rademacher average, we first give a lemma
regarding the topology of Krĕın spaces putting empha-
sis on both difference and close relationship with the
Hilbertian case.

Lemma 9 For all g ∈ K:

sup
f∈BK

〈f(.), g(.)〉K = ‖g‖

Proof It is trivial if g = 0. ∀g ∈ K, g 6= 0, let
h = g/‖g‖. By construction ‖h‖ = 1.

sup
f∈BK

〈f(.), g(.)〉K = ‖g‖ sup
f∈BK

〈f(.), h(.)〉K

= ‖g‖ sup
f∈BK

(
〈f+, h+〉K+ − 〈f−, h−〉K−

)
= ‖g‖

(
〈h+, h+〉K+ + 〈h−, h−〉K−

)
= ‖g‖

In the unit ball of a RKKS, the Rademacher average
with respect to the probability measure µ behave the
same way as the one of its associated RKHS.

Proposition 10 (Rademacher Average) Let
K be the Gram matrix of kernel k at points

x1, . . . , xm, If according to the measure µ on X
x 7−→ k(x, x) ∈ L1(X , µ), then

Rm(BK) ≤ M
1
2

with

M =
1
m

Eµ

(
tr

(
K

))
=

∫
X

k(x, x)dµ(x)

The proof works just as in the Hilbertian case (Mendel-
son, 2003, Theorem 16) with the application of
lemma 9. As a second slight difference we choose to
express the bound as a function of the L1(X , µ) norm
of the kernel instead of going through its spectral rep-
resentation. It is simpler since for instance, for the un-
normalized gaussian kernel k(x, y) = exp(−(x − y)2)
on X = R we have M = 1 regardless the measure µ
considered. Since we are back to the Hilbertian con-
text (Mendelson, 2003, Corollary 4) applies replacing
Hilbert by Krĕın, providing an uniform convergence
result as expected.

4. Machine Learning in RKKS

In order to perform machine learning, we need to be
able to optimize over a class of functions, and also to
be able to prove that the solution exists and is unique.
Instead of minimizing over a class of functionals as in a
RKHS, we look for the stationary point. This is moti-
vated by the fact that in a RKHS, minimization of the
cost functional can be seen as a projection problem.
The equivalent projection problem in RKKS gives us
the stationary point of the cost functional.

4.1. Representer Theorem

The analysis of the learning problem in a RKKS gives
similar representer theorems to the Hilbertian case
(Schölkopf et al., 2001). The key difference is that the
problem of minimizing a regularized risk functional be-
comes one of finding the stationary point of a similar
functional. Moreover, the solution need not be unique
any more. The proof technique, however, is rather
similar. The main difference is that a) we deal with a
constrained optimization problem directly and b) the
Gateaux derivative has to vanish due to the nondegen-
eracy of the inner product. In the following, we define
the training data X := (x1, . . . , xm) drawn from the
learning domain X .

Theorem 11 Let K be an RKKS with kernel k. De-
note by L{f,X} a continuous convex loss functional
depending on f ∈ K only via its evaluations f(xi) with
xi ∈ X, let Ω(〈f, f〉) be a continuous stabilizer with



strictly monotonic Ω : R → R and let C{f,X} be a
continuous functional imposing a set of constraints on
f , that is C : K×Xm → Rn. Then if the optimization
problem

stabilize
f∈K

L{f,X}+ Ω(〈f, f〉K) (1)

subject to C{f,X} ≤ d

has a saddle point f∗, it admits the expansion

f∗ =
∑

i

αik(xi, ·) where xi ∈ X and αi ∈ R. (2)

Proof The first order conditions for a solution of (1)
imply that the Gateaux derivative of the Lagrangian

L{f, λ} = L{f,X}+ Ω(〈f, f〉K) + λ>(C{f,X} − d)

needs to vanish. By the nondegeneracy of the inner
product, 〈f, g〉K = 0 for all g ∈ K implies f = 0.

Next observe that the functional subdifferential of
L{f, λ} with respect to f satisfies (Rockafellar, 1996)

∂fL{f, λ} =
m∑

i=1

∂f(xi)

[
L{f,X}+ λ>C{f,X}

]
k(xi, ·)

+ 2f∂〈f,f〉Ω(〈f, f〉K). (3)

Here ∂ is understood to be the subdifferential with
respect to the argument wherever the function is
not differentiable, since C and Ω only depends on
f(xi), the subdifferential always exists with respect
to [f(x1), . . . , f(xm)]>. Since for stationarity the
variational derivative needs to vanish, we have
0 ∈ ∂fL{f, λ} and consequently f =

∑
i αik(xi, ·)

for some αi ∈ ∂f(xi)

[
L{f,X}+ λ>C{f,X}

]
. This

proves the claim.

Theorem 12 (Semiparametric Extension) The
same result holds if the optimization is carried out
over f + g, where f ∈ K, and g is a parametric
addition to f . Again f lies in the span of k(xi, ·).

Proof [sketch only] In the Lagrange function the
partial derivative with respect to f needs to vanish
just as in (3). This is only possible if f is contained
in the span of kernel functions on the data.

4.2. Application to general spline smoothing

We consider the general spline smoothing problem as
presented in (Wahba, 1990), except we are considering

Krĕın spaces. The general spline smoothing is defined
as the function stabilizing (that is finding the station-
ary point) the following criterion:

Jm(f) =
1
m

m∑
i=1

(
yi − f(xi)

)2 + λ〈f, f〉K. (4)

The form for the solution of equation (4) is given by
the representer theorem, which says that the solution
(if it exists) is the solution of the linear equation

(K + λI)α = y,

where Kij = k(xi, xj) is the Gram matrix.

The general spline smoothing problem can be viewed
as applying Tikhonov regularization to the interpola-
tion problem. However, since the matrix K is indef-
inite, it may have negative eigenvalues. For values of
the regularization parameter λ which equal a negative
eigenvalue of the Gram matrix K, (K + λI) is singu-
lar. Note that in the case where K is positive, this does
not occur. Hence, solving the Tikhonov regularization
problem directly may not be successful. Instead, we
use the subspace expansion from Theorem 11 directly.

5. Algorithms for Krĕın space
Regularization

Tikhonov regularization restricts the solution of the
interpolation error 1

m

∑m
i=1(yi − f(xi))2 to a ball of

radius 1/λ〈f, f〉2K. Hence, it projects the solution of
the equation onto the ball. To avoid the problems of
singular (K + λI), the approach we take here is to set
λ = 0, and to find an approximation to the solution in
a small subspace of the possible solution space. That
is, we are solving the following optimization problem,

stabilize
f∈K

1
m

m∑
i=1

(
yi − f(xi)

)2

subject to f ∈ L ⊂ span{αik(xi, ·)}.
(5)

We describe several different ways of choosing the sub-
space L. Defining T : K → Rm to be the evaluation
functional (Definition 4), we can express the inter-
polation problem f(xi) = yi given the training data
(x1, y1), . . . , (xm, ym) ∈ (X × R)m, as the linear sys-
tem Tf = y, where f ∈ K, and K is a RKKS. Define
T ∗ : Rm → K to be the adjoint operator of T such
that 〈Tf, y〉 = 〈f, T ∗y〉. Note that since T operates on
elements of a Krĕın space, TT ∗ = K is indefinite.

5.1. Truncated Spectral Factorization

We perform regularization by controlling the spec-
trum of K. We can obtain the eigenvalue decompo-
sition of K, Kui = µiui, where u1, . . . , um are the



orthonormal eigenvectors of K, and µi are the associ-
ated nonzero eigenvalues (assume K is regular). Let
vi = sign(µi)√

|µi|
T ∗ui, then vi are the orthogonal eigenvec-

tors for T ∗T . The solution of Tf = y (if it exists), is
given by

f =
m∑

i=1

〈y, ui〉
µi

T ∗ui

Intuitively, we associate eigenvalues with large abso-
lute values to the underlying function, and eigenvalues
close to zero corresponds to signal noise. The Trun-
cated Spectral Factorization (TSF) (Engl & Kügler,
2003) method can be obtained by setting all the eigen-
values of small magnitude to zero. This means that the
solution is in the subspace

L = span{T ∗ui}, |µi| > λ

5.2. Iterative Methods

Iterative methods can be used to minimize the squared
error J(f) := 1

2‖Tf − y‖2. Since J(f) is convex,
we can perform gradient descent. Since ∇fJ(f) =
T ∗Tf − T ∗y, we have the iterative definition fk+1 =
fk − λ(T ∗Tf − T ∗y), which results in Landweber-
Fridman (LF) iteration (Hanke & Hansen, 1993). The
solution subspace in this case is the polynomial

L = span{(I− λT ∗T )kT ∗y} for 1 6 k 6 m.

A more efficient method which utilizes the Krylov sub-
spaces is MR-II (Hanke, 1995). MR-II, which gen-
eralizes conjugate gradient methods to indefinite ker-
nels, searches for the minimizer of ‖Kα − y‖ within
the Krylov subspace

L = span{Kr0,K
2r0, . . . ,K

k−2r0},

where r0 = y−Kα0. The algorithm is shown in Figure
1. The convergence proof and regularization behavior
can be found in (Hanke, 1995).

5.3. Illustration with Toy Problem

We apply TSF, LF, and MR-II to the spline approx-
imation of sinc(x) and cos(exp(x)). The experiments
was performed using 100 random restarts. The re-
sults using a Gaussian combinations kernel are shown
in Figure 2. The aim of these experiments is to show
that we can solve the regression problem using itera-
tive methods. The three methods perform equally well
on the toy data, based on visually inspecting the ap-
proximation. TSF requires the explicit computation
of the largest eigenvalues, and hence would not be

r0 = y − Sx0; r1 = r0; x1 = x0;
v−1 = 0; v0 = Sr0; w−1 = 0; w0 = Sv0;
β = ‖w0‖; v0 = v0/β; w0 = w0/β;
k = 1;
while (not stop) do

% = 〈rk, wk−1〉; α = 〈wk−1, Swk−1〉;
xk+1 = xk + %vk−1; rk+1 = rk + %wk−1;
vk = wk−1 − αvk−1 − βvk−2;
wk = Swk−1 − αwk−1 − βwk−2;
β = ‖wk‖; vk = vk/β; wk = wk/β;
k = k + 1;

end while

Figure 1. Algorithm: MR-II. Note that there is only one
matrix-vector product in each iteration. Since a matrix-
vector product is O(m), the total number of operations is
just O(km), where k is the number of iterations.

suitable for large problems. LF has been previously
shown to have slow convergence (Hanke & Hansen,
1993), requiring a large number of iterations. MR-II
has the benefits of being an iterative method and also
has faster convergence. The results above required 30
iterations for LF, but only 8 for MR-II.

6. Conclusion

The aim of this paper is to introduce the concept
of an indefinite kernel to the machine learning com-
munity. These kernels, which induce an RKKS, ex-
hibit many of the properties of positive definite ker-
nels. Several examples of indefinite kernels are given,
along with their spectral properties. Due to the lack
of positivity, we stabilize the loss functional instead
of minimizing it. We have proved that stabilization
provides us with a representer theorem, and also gen-
eralization error bounds via the Rademacher average.
We discussed regularization with respect to optimizing
in Krĕın spaces, and illustrated the spline smoothing
problem on toy datasets.
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