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Abstract

This thesis extends the paradigm of machine learning with kernels. This paradigm
is based on the idea of generalizing an inner product between vectors to a similarity
measure between objects. The kernel implicitly defines a feature mapping between the
space of objects and the space of functions, called the reproducing kernel Hilbert space.
There have been many successful applications of positive semidefinite kernels in diverse
fields. Among the reasons for its success are a theoretically motivated regularization
method and efficient algorithms for optimizing the resulting problems.

Since the kernel has to effectively capture the domain knowledge in an application,
we study the problem of learning the kernel itself from training data. The proposed
solution is a kernel on the space of kernels itself, which we called a hyperkernel. This
provides a method for regularization via the norm of the kernel. We show that for
several machine learning tasks, such as binary classification, regression and novelty
detection, the resulting optimization problem is a semidefinite program. We solve
the corresponding optimization problems using the same parameter settings across all
problems, and demonstrate that we have further automated machine learning methods.

We observe that the restriction for kernels to be positive semidefinite can be re-
moved. The non-positive kernels, called indefinite kernels, have corresponding func-
tional theory, and define reproducing kernel Krĕın spaces. We derive machine learning
problems with indefinite kernels and prove the representer theorem as well as general-
ization error bounds.

We provide theoretical and experimental evidence to support the idea of regular-
ization by early stopping of conjugate gradient type algorithms. Conjugate gradient
type algorithms are iterative methods that generate solutions in Krylov subspaces, and
exhibit semi-convergence. We analyse the sequence of Krylov subspaces that determine
the associated filter function on the spectrum of the inverse problem, and quantitatively
investigate semi-convergence. These algorithms are then used for machine learning with
indefinite kernels.
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Chapter 1

Introduction

This chapter introduces kernels, regularization and optimization, and shows their role
in machine learning. These are the key concepts we deal with when extending the
framework of machine learning with kernels. It concludes with a description of the
contributions of this thesis.

1.1 Introduction to Machine Learning

Machine Learning is an attempt at codifying a particularly useful human trait, which
is the ability to generalise previous experiences to make educated guesses about the
future behaviour of the world. In practice, a computer can only make observations of
a phenomenon. The task of a machine learning algorithm is to use the observations
and try to predict future observations. The algorithm uses the examples to form a
hypothesis about the underlying phenomenon. The algorithms we investigate in this
thesis are batch algorithms, which means that there are distinct training and testing
phases. Hence we collect a set of observations, which are also called training examples,
and update the hypothesis based on the examples. This is called the training phase.
Once the machine is trained, the resulting hypothesis is used to perform predictions.

Since we cannot take perfect measurements of the world, some of the training data
may be misleading. One can view this as noise in the data. To consistently and
efficiently predict the behaviour of a real world problem, we effectively have to restrict
the class of hypotheses about the world. One popular restriction uses the kernel of
an integral operator, and is called kernel methods [Schölkopf and Smola, 2002, Shawe-
Taylor and Cristianini, 2004]. This thesis investigates kernel methods for machine
learning. For the moment, we treat the kernel machine as a black box and introduce
the other parts of machine learning in more detail.

We assume that we can learn the nature of the underlying problem by investigating
a sample of instances from the problem. Figure 1.1 depicts the framework of learning
the kernel as described below. In many applications, each observation of the training

1



2 Introduction

Figure 1.1: A representation of the learning with kernels framework. The data and criteria
for success are determined by the problem. Prior knowledge about problem is captured by the
similarity measure. The kernel machine produces a prediction for future examples of data.

data is labelled, for example by some human expert. This is called supervised learning.
We denote by X the space of input data and Y the space of labels (if we have a
supervised learning problem). Denote by Xtrain := {x1, . . . , xm} the training data and
with Ytrain := {y1, . . . , ym} a set of corresponding labels, jointly drawn independently
and identically from some probability distribution Pr(x, y) on X × Y. We shall, by
convenient abuse of notation, generally denote Ytrain by the vector y when writing
equations in matrix notation. For a new example xtest ∈ X , the problem of machine
learning is to predict the label ytest using our prior knowledge of the problem and the
training examples. Observe that we do not know Pr(x, y), and hence the algorithm
has to perform predictions based on the information provided by training data. The
success of our algorithm is measured via the loss function ` which is a function of the
training data, and is described in more detail in Section 1.1.2.

The class of algorithms we consider do not deal directly with the objects them-
selves (xi ∈ X ), but with measures of similarity between them. In other words, our
algorithms only use k(xi, xj), where k is a similarity measure between any two obser-
vations. Such algorithms are described in Section 1.1.3. The assumption is that the
similarity captures the domain knowledge. Furthermore, the hypothesis class contains
only linear hypotheses. This restriction is not as severe as it may seem, as we shall see
in the next section. The advantage of this approach is that we can separate the design
of good algorithms for machine learning from the design of good representations of the
data based on domain knowledge.
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1.1.1 Kernels

Kernels are a special type of similarity measure with many “nice” properties. Kernels
are inner products, denoted by 〈·, ·〉H, in a feature spaceH. That is, for some xi, xj ∈ X ,

k(xi, xj) = 〈φ(xi), φ(xj)〉H,

where φ : X → H is a mapping from the space of objects to a feature space, and
the inner product is with respect to a Hilbert space H, with kernel k(·, ·) [Aronszajn,
1950]. In this setting, the hypothesis of the machine learning algorithm is a function
f : X → R in the feature space defined by φ. Kernel methods do not explicitly use the
feature mapping, instead they implicitly define φ via the kernel function k. A linear
machine learning algorithm can then be applied to these features. However, since φ
can be a nonlinear mapping, the algorithm can estimate nonlinear functions as well.

Given our hypothesis function f , we apply it at the test point xtest, that is we
compute f(xtest). Formally this is called evaluating the function at a given point. In
addition, since what we really want is to predict well, we would like functions which
are similar to each other to also give predictions which are similar to each other. This
means that if we learn a function which is close to a good function, it will predict labels
close to the correct labels. In functional analysis this property is called continuity of the
evaluation functional. A reproducing kernel Hilbert space (RKHS) consists of functions
which have these properties of being pointwise defined and have a continuous evaluation
functional. There are two possible ways to define a RKHS, giving alternative views.
The first definition tells us about the restrictions we place on our functions and their
evaluations.

Definition 1 (Reproducing Kernel Hilbert Space) [Schwartz, 1964] A reproduc-
ing kernel Hilbert space is a space H for which at each x ∈ X the Dirac evaluation
functional,

δx : H → R,

which maps f ∈ H to f(x) ∈ R, is a bounded (or equivalently, continuous) linear
functional.

From this definition, and using the Riesz representation theorem [Akhiezer and
Glazman, 1993, Section 16], we get an alternative but equivalent construction that
views the space in terms of its reproducing property. This second definition appears
more frequently in machine learning literature.

Definition 2 (Reproducing Kernel Hilbert Space) [Aronszajn, 1950] Let X be a
nonempty set (the index set) and denote by H a Hilbert space of functions f : X → R.
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H is called a reproducing kernel Hilbert space endowed with the dot product 〈·, ·〉 (and
the norm ‖f‖ :=

√
〈f, f〉) if there exists a function k : X × X → R with the following

properties.

1. k has the reproducing property

〈f, k(x, ·)〉 = f(x) for all f ∈ H, x ∈ X ; (1.1)

in particular, 〈k(x, ·), k(x′, ·)〉 = k(x, x′) for all x, x′ ∈ X .

2. k spans H, i.e. H = span{k(x, ·)|x ∈ X} where X is the completion of the pre-
Hilbert space X.

The symmetric function of two arguments, k(xi, xj), is called the reproducing ker-
nel. This function is positive semidefinite and has been called a Mercer kernel or a
positive semidefinite kernel.

Definition 3 (Positive Semidefinite Kernel) A symmetric function k : X × X →
R is called a positive semidefinite kernel if it is positive semidefinite, that is, for all
a1, . . . , an ∈ R and x1, . . . , xn ∈ X ,

n∑
i,j=1

aiajk(xi, xj) > 0.

In many cases, when it is clear from the context, we refer to the positive semidefinite
kernel as just the kernel, or the positive kernel. In the later chapters, where we extend
this notion of a kernel, we note when the kernel is not positive semidefinite.

A key question is whether this relationship between the kernel and the RKHS is
unique. If for each kernel function k(·, ·), there were many possible RKHSs, we would
not be able to specify precisely which class of functions we are using. Similarly, dif-
ficulties would arise if for each RKHS we had many possible kernel functions. These
difficulties do not occur, as by the Moore-Aronszajn theorem (Theorem 4), the rela-
tionship between each kernel and its RKHS is unique. This means that by defining the
kernel, we define the set of possible functions from which we can choose our solution.

Theorem 4 (Moore-Aronszajn) (Theorem 1.1.1 [Wahba, 1990]) To every RKHS
there corresponds a unique positive semidefinite function (called the reproducing kernel)
and conversely, given a kernel k : X × X → R, we can construct a unique RKHS of
real valued functions on X with k as its reproducing kernel.

In summary, learning in a RKHS ensures that we have a continuous evaluation
functional and we can define the class of functions we are looking at by the kernel
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function. The kernel also has the added benefit of having an intuitive interpretation of
being a mapping into some feature space where a linear algorithm can be applied. For
further details of reproducing kernel Hilbert spaces, the reader is referred to Aronszajn
[1950], Saitoh [1988] and Wahba [1990].

1.1.2 Regularization

In addition to being able to evaluate our function, we would like a solution from
applying our learning algorithm to noisy data to be “near” the optimal solution without
noise. There are two parts to measuring the success of our algorithm given some
training data. First, we would like to match the training data as closely as possible.
However, keeping in mind that there may be noise in the training data, we would like
to prevent overfitting by restricting the complexity of the functions we are studying.
Regularization aims to balance these two conflicting requirements.

We measure the “nearness” of a function f at an example xtest given a label ytest

by a loss function
`(xtest, ytest, f(xtest)).

The loss function ` : X × Y × Y → [0,∞) is defined for all x ∈ X and y ∈ Y such
that `(x, y, y) = 0. The notion of risk measures the success of our algorithm and is a
combination of these loss functions. We assume that the examples are independently
and identically drawn from a distribution Pr(x, y), and hence we would like to minimize
the expected risk,

R(f) = EX×Y(`(x, y, f(x))) =
∫
X×Y

`(x, y, f(x))dPr(x, y).

Since the distribution is unknown there are two approaches we can take [Vapnik, 1982,
Chapter 2]. The most common approach is the idea of empirical risk minimization with
an associated regularization term. The second approach connects the minimization of
expected risk with the use of an iterative procedure. This second approach leads to
the idea of semi-convergence and regularization by early stopping.

There is a large body of work on empirical risk minimization and associated gen-
eralization error bounds. No attempt shall be made to survey this work, and the
interested reader is directed to Vapnik [1995, 1998] for the classical approach, Devroye
et al. [1996] for a statistical viewpoint and Mendelson [2003] for a tutorial on recent
approaches to generalization error bounds.

The advantage of optimization in a RKHS is that under certain conditions the
optimal solutions can be found as the linear combination of a finite number of basis
functions, regardless of the dimensionality of the space H the optimization is carried
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out in. The theorem below formalizes this notion (see [Kimeldorf and Wahba, 1971]
and [Schölkopf and Smola, 2002, Theorem 4.2]).

Theorem 5 (Representer Theorem) Let Ω : [0,∞) → R be a strictly monotonic
increasing function, X a set, and ` : (X ×R2)m → R∪{∞} an arbitrary loss function.
Then each minimizer f ∈ H of the general regularized risk

` ((x1, y1, f(x1)) , . . . , (xm, ym, f(xm))) + Ω (‖f‖H) (1.2)

admits a representation of the form

f(x) =
m∑

i=1

αik(xi, x). (1.3)

where k is the reproducing kernel of H, and αi ∈ R for all i = 1, . . . ,m.

The representer theorem tells us that when performing empirical risk minimization
with a regularization term Ω (‖f‖H), the optimal function can be expressed in terms of
kernel functions on our training data. Note that the kernel controls the regularization
properties of our optimization problem since the regularization term is a function of
the norm in H. More general versions of the representer theorem exists, for example
when learning in Banach spaces [Micchelli and Pontil, 2004].

1.1.3 Optimization

An important ingredient of a successful machine learning algorithm is a fast and ef-
ficient method for computation. As was mentioned earlier, kernels implicitly define a
feature mapping to a RKHS. In this RKHS we search for linear hypotheses. One very
successful method for finding a good linear hypothesis is the Support Vector Machine
(SVM) [Bennett and Mangasarian, 1992, Cortes and Vapnik, 1995]. SVMs are an ex-
ample of a class of problems which have a global minimum, called convex optimization
problems [Rockafellar, 1996, Boyd and Vandenberghe, 2004]. Algorithms for solving
convex problems are efficient, which means that large scale problems can be solved.

In addition to being convex and efficient, SVMs only access the training data via
their inner products. Hence SVMs are kernel methods and one can replace the inner
product by the kernel function (this is commonly referred to as the “kernel trick”) and
generalise the SVM to nonlinear hypotheses. The success of SVMs have led to proposals
for different versions for binary classification [Cortes and Vapnik, 1995, Schölkopf et al.,
2000], regression [Smola and Schölkopf, 1998], multiclass classification [Rätsch et al.,
2002] and novelty detection [Schölkopf et al., 2001].
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Kernel methods are not restricted to SVMs, since the “kernel trick” can be applied
to any algorithm that accesses data via inner products. A literature survey of the
specific approaches used in this thesis are presented in the relevant sections.

1.2 Contributions of this Thesis

This thesis presents two extensions to the framework for machine learning with kernels.
The first is an application of kernels to the problem of learning the kernel itself. This
gives rise to the idea of a hyperkernel. The second is a generalization of machine
learning with kernels that are not necessarily positive semidefinite. For each extension,
we present:

• Motivations for the extension in terms of existing problems in machine learning
(Section 2.3 and Section 4.1).

• The functional framework of the kernel involved, and how it relates to the classical
reproducing kernel Hilbert space (Section 2.4 and Section 4.2).

• Examples of kernels in the extended class (Section 2.5 and Section 4.2.4).

• An investigation into how to regularize the solution (Section 2.4.1 and Chapter 5).

• Derivations of the optimization problems associated with common machine learn-
ing applications in the new framework (Section 3.1 and Chapter 6).

• Experimental evidence that the algorithms solve the learning problems (Sec-
tion 3.2 and Section 6.2).

Many of the techniques used are well known, some of which may not be well known
within the machine learning community but are popular in other fields of science and
mathematics. The following sections clarify the novel parts of this thesis and the
methods borrowed from other fields.

1.2.1 Learning the Kernel

The first contribution is a framework to learn the best kernel from the training data for
a particular estimation task (Chapter 2). The proposed criteria for success (Section 2.3)
generalize several traditional ways of choosing kernels. The functional framework (Sec-
tion 2.4) defines a kernel on the space of kernels itself, hence giving a natural extension
to the idea of regularization.

The semidefinite programs corresponding to several algorithms for binary classifica-
tion, regression and novelty detection were derived, and the actual numerical solution
was done using known techniques in convex optimization (Chapter 3).
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1.2.2 Learning with Indefinite Kernels

By treating the problem of learning the kernel as an application of RKHS theory, the
representer theorem (Theorem 10) implies that the solution is a linear combination of
kernels. Note that a linear combination of positive semidefinite kernels is not necessarily
positive semidefinite. This means that unless we have further constraints, the notion of
a non-positive kernel arises naturally. These non-positive kernels are called indefinite
kernels, and they have appeared in several other applications of mathematics and
engineering.

The second contribution of this thesis is a framework for machine learning with
indefinite kernels. Chapter 4 shows that the idea of an indefinite kernel results in a
reproducing kernel Krĕın space (RKKS), and collects several results from functional
analysis to parallel the results for RKHS in the positive semidefinite case. Due to the
geometry of Krĕın spaces, the corresponding notion to minimization in Hilbert space is
stabilization. The representer theorem and the intuition behind the resulting optimiza-
tion problem are presented in Section 4.3, and generalization bounds are computed in
Section 4.4. To illustrate the subtle differences between learning in Krĕın spaces and
Hilbert spaces, an investigation of the spectrum of the evaluation operator is shown in
Section 4.5.

1.2.3 Regularization by Early Stopping

We argue that the traditional regularized risk minimization framework may not succeed
for indefinite kernels, and propose using regularization by early stopping of subspace
iterations in Chapter 5. In fact, this regularization paradigm can be applied to positive
kernels as well, since they are just a special case. The third contribution of this thesis
is a study of regularization using Krylov subspace algorithms. This has been studied
in numerical optimization, but is relatively unknown in the machine learning commu-
nity. Krylov subspace algorithms, which are also known as conjugate gradient type
algorithms, are introduced in Section 5.2. Their regularization properties are analysed
via the filter functions induced on the spectrum of the kernel in Section 5.3.

Iterative methods such as conjugate gradient type methods applied to ill-posed
problems exhibit semi-convergence: the iterates initially converge towards the true
solution but as the number of iterations increase, diverge away. The behaviour of a
particular algorithm, called Minimal Residual, is analysed in Section 5.4. The results
from numerical mathematics are interpreted in terms of machine learning, demonstrat-
ing that early stopping indeed performs regularization.
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1.3 Summary of Contributions

In summary, the three contributions of this thesis are: a framework for learning the
kernel, an extension of kernel methods to indefinite kernels, and an investigation of
regularization by early stopping. These contributions can also be viewed independently
of each other, as each advance can be applied to areas other than those investigated
here.
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Chapter 2

Learning the Kernel

This chapter addresses the problem of choosing a kernel suitable for estimation with
a Support Vector Machine. This goal is achieved by defining a reproducing kernel
Hilbert space on the space of kernels itself. Such a formulation leads to a statistical
estimation problem similar to the problem of minimizing a regularized risk functional.
The solution of the resulting optimization problem is discussed in Chapter 3.

After a brief introduction and motivation to the need for learning the kernel (Sec-
tion 2.1, we review methods for model selection (Section 2.2). We show that for kernel-
based learning methods there exists a functional, the quality functional, which plays
a similar role to the empirical risk functional (Section 2.3). We introduce a kernel
on the space of kernels itself, a hyperkernel (Section 2.4), and its regularization on
the associated Hyper reproducing kernel Hilbert space (Hyper-RKHS). This leads to
a systematic way of parameterizing kernel classes while managing overfitting. We give
several examples of hyperkernels and recipes to construct others (Section 2.5).

2.1 Introduction

Kernel methods have been highly successful in solving various problems in machine
learning. The algorithms work by implicitly mapping the inputs into a feature space,
and finding a suitable hypothesis in this new space. In the case of the Support Vector
Machine (SVM), this solution is the hyperplane which maximizes the margin in the
feature space. The feature mapping in question is defined by a kernel function, which
allows us to compute dot products in feature space using only objects in the input space.
For an introduction to SVMs and kernel methods, the reader is referred to several
tutorials (such as Burges [1998]) and books (such as Schölkopf and Smola [2002]).

Choosing a suitable kernel function, and therefore a feature mapping, is imperative
to the success of this inference process. To date there are few systematic techniques to
assist in this choice.

As motivation for the need for methods to learn the kernel function, consider Fig-
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ure 2.1, which shows the separating hyperplane and the margin for the same dataset.
Figure 2.1(a) shows the classification function for a support vector machine using a
Gaussian radial basis function (RBF) kernel. The data has been generated using two
Gaussian distributions with standard deviation 1 in one dimension and 1000 in the
other. This difference in scale creates problems for the Gaussian RBF kernel, since it
is unable to find a kernel width suitable for both directions. Hence, the classification
function is dominated by the dimension with large variance. Increasing the value of the
regularization parameter C, and hence decreasing the smoothness of the function, re-
sults in a hyperplane which is more complex, and equally unsatisfactory (Figure 2.1(b)).
The traditional way to handle such data is to normalise each dimension independently.

Instead of normalising the input data, we make the kernel adaptive to allow in-
dependent scales for each dimension. This allows the kernel to handle unnormalised
data. However, the resulting kernel would be difficult to hand-tune as there may be
numerous free variables. In this case, we have a free parameter for each dimension of
the input. We ‘learn’ this kernel by defining a quantity analogous to the risk functional,
called the quality functional, which measures the ‘badness’ of the kernel function. The
classification function for the above mentioned data is shown in Figure 2.1(c). Observe
that it captures the scale of each dimension independently. In general, the solution
does not consist of only a single kernel but a linear combination of them.

2.2 Review of Methods for Model Selection

A user of machine learning algorithms is faced with two levels of model selection.
Firstly, the user has to decide on the type of algorithm, such as neural networks,
Bayesian learning, maximum likelihood estimation or SVM. Then, within that partic-
ular class of algorithms, the user has to choose a particular setting to solve a particular
problem. Learning the kernel falls into the latter case.

2.2.1 Model Selection for Machine Learning

Model selection inherently requires certain assumptions about the problem. This is
formalized in the No Free Lunch theorem [Wolpert, 2001], which asserts that there is
no algorithm which performs better than all other algorithms on all datasets. An anal-
ogous theorem for feature representation called the Ugly Duckling Theorem [Watan-
abe, 1985] asserts that there is no best representation for data, and even the notion
of similarity between objects depends on assumptions. We shall explicitly state the
assumptions made for previous work on learning the kernel.
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(a) Standard Gaussian RBF kernel (C=10) (b) Standard Gaussian RBF kernel
(C=108)

(c) RBF-Hyperkernel with adaptive widths

Figure 2.1: Plot of synthetic data, showing the separating hyperplane and the margins given
for a uniformly chosen length scale (top) and an automatic width selection (bottom). For data
with highly non-isotropic variance, choosing one scale for all dimensions leads to unsatisfactory
results.
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2.2.2 Learning the Kernel

We analyze some recent approaches to learning the kernel by looking at the objective
function that is being optimized and the class of kernels being considered. We will
see later (Section 2.3) that this objective function is related to our definition of a
quality functional. We denote by K the kernel matrix given by Kij := k(xi, xj) where
xi, xj ∈ X . We also use trK to mean the trace of the matrix and detK to mean the
determinant.

Cross validation has been used to select the parameters of the kernels and SVMs
[Duan et al., 2003, Meyer et al., 2003], with varying degrees of success. The objective
function is the regularized risk functional, and the class of kernels is a finite set defined
by a grid of the possible parameter settings. Duan et al. [2003] and Chapelle et al. [2002]
tests various approximations which bound the leave one out error, or some measure
of the capacity of the SVM. The notion of alignment [Cristianini et al., 2003] can be
seen as an instance of the empirical quality functional. Hence the objective function is
tr(Kyy>) where y are the training labels, and K is from the class of kernels spanned by
the eigenvectors of the kernel matrix of the combined training and test data. The SDP
approach [Lanckriet et al., 2002, 2004] uses a more general class of kernels, namely a
linear combination of positive semidefinite matrices. They minimize the margin of the
resulting SVM using a SDP for kernel matrices with constant trace. Similar to this,
Bousquet and Herrmann [2002] further restricts the class of kernels to the convex hull of
the kernel matrices normalized by their trace. This restriction, along with minimization
of the complexity class of the kernel, allows them to perform gradient descent to find the
optimum kernel. Using the idea of boosting, Crammer et al. [2002] optimize

∑
t βtKt,

where βt are the weights used in the boosting algorithm. The class of base kernels
is obtained from the normalized solution of the generalized eigenvector problem. In
principle, one can learn the kernel using Bayesian methods by defining a suitable prior,
and learning the hyperparameters by optimizing the marginal likelihood [Williams and
Rasmussen, 1996, Williams and Barber, 1998]. As an example of this, when other
information is available, an auxiliary matrix can be used with the EM algorithm for
learning the kernel [Tsuda et al., 2003]. Table 2.1 summarises these approaches. The
notation K � 0 means that K is positive semidefinite, that is for all a ∈ Rn, a>Ka > 0.

2.3 Kernel Quality Functionals

To optimize over a class of kernels, we need a performance measure which tells us
whether we are successful or not. We introduce a new class of functionals Q on data
which we will call quality functionals. Note that by quality we actually mean badness or
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Approach Objective Kernel class (K)
Cross Validation CV Risk Finite set of kernels
Alignment y>Ky {

∑m
i=1 βiviv

>
i where vi are eigenvectors of K}

SDP margin {
∑m

i=1 βiKi s.t. Ki � 0, trKi = c}
Complexity Bound margin {

∑m
i=1 βiKi s.t. Ki � 0, trKi = c, βi > 0}

Boosting Exp/LogLoss Base kernels from eigenvector problem
Bayesian neg. log-post. dependent on prior
EM Algorithm KL Divergence linear combination of auxiliary matrix

Table 2.1: Summary of recent approaches to kernel learning.

lack of quality, as we would like to minimize this quantity. Their purpose is to indicate,
given a kernel k and the training data, how suitable the kernel is for explaining the
training data or, in other words, the quality of the kernel for the estimation problem
at hand. Such quality functionals may be the kernel target alignment, the negative
log posterior, the minimum of the regularized risk functional, or any luckiness function
for kernel methods. We will discuss those functionals after a formal definition of the
quality functional itself.

2.3.1 Empirical and Expected Quality

Definition 6 (Empirical Quality Functional) Let H+ be the class of positive semi-
definite functions. Given a kernel k, and data X,Y , we define Qemp(k,X, Y ) : H+ ×
Xm×Ym → R to be an empirical quality functional if it depends on k only via k(xi, xj)
where xi, xj ∈ X .

By this definition, Qemp is a function which tells us how well matched k is to a specific
dataset X,Y . Typically such a quantity is used to adapt k in such a manner that Qemp

is optimal (e.g., optimal alignment, greatest luckiness, smallest negative log-posterior),
based on this one single dataset X,Y . Provided a sufficiently rich class of kernels
F it is in general possible to find a kernel k∗ that attains the minimum of any such
Qemp regardless of the data. However, it is very unlikely that Qemp(k∗, X, Y ) would be
similarly small for other X,Y , for such a k∗. To measure the overall quality of k we
therefore introduce the following definition:

Definition 7 (Expected Quality Functional) Denote by Qemp(k,X, Y ) an empir-
ical quality functional, then

Q(k) := EX,Y [Qemp(k,X, Y )] (2.1)

is defined to be the expected quality functional. Here the expectation is taken over
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X,Y , where all xi, yi are drawn from Pr(x, y).

Observe the similarity between the empirical quality functional, Qemp(k,X, Y ), and
the empirical risk of an estimator, Remp(f,X, Y ) = 1

m

∑m
i=1 `(xi, yi, f(xi)) (where ` is

a suitable loss function); in both cases we compute the value of a functional which
depends on some sample X,Y drawn from Pr(x, y) and a function. We have

Q(k) = EX,Y [Qemp(k,X, Y )] and R(f) = EX,Y [Remp(f,X, Y )] . (2.2)

Here R(f) denotes the expected risk. However, while in the case of the empirical
risk, we can interpret Remp as the the empirical estimate of the expected loss R(f) =
Ex,y[`(x, y, f(x))], no such analogy is available for quality functionals, due to the general
form of Qemp.

Finding a general-purpose bound of the expected error in terms of Q(k) is diffi-
cult, since the definition of Q depends heavily on the algorithm under consideration.
Nonetheless, it provides a general framework within which such bounds can be derived.

To obtain a generalization error bound, one would require that Qemp is concen-
trated around its expected value. Furthermore, one would require the deviation of the
empirical risk to be bounded above by Qemp and possibly other terms. In other words,
we make the following two assumptions: we have given a concentration inequality on
quality functionals, such as

Pr {|Qemp(k,X, Y )−Q(k)| > εQ} < δQ,

and we have a bound on the deviation of the empirical risk in terms of the quality
functional

Pr {|Remp(f,X, Y )−R(f)| > εR} < δ(Qemp).

Then we can chain both inequalities together to obtain the following bound

Pr {|Remp(f,X, Y )−R(f)| > εR} < δQ + δ(Q+ εQ).

This means that the bound now becomes independent of the particular value of the
quality functional obtained on the data, rather than the expected value of the quality
functional. Bounds of this type have been derived for Kernel Target Alignment [Cris-
tianini et al., 2003, Theorem 9] and the Algorithmic Luckiness framework [Herbrich
and Williamson, 2002, Theorem 17].
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2.3.2 Examples of Qemp

Before we continue with the derivations of a regularized quality functional and introduce
a corresponding reproducing kernel Hilbert space, we give some examples of quality
functionals and present their exact minimizers, whenever possible. This demonstrates
that given a rich enough feature space, we can arbitrarily minimize the empirical quality
functional Qemp. The difference here from traditional kernel methods is the fact that
we allow the kernel to change. This extra degree of freedom allows us to overfit the
training data. In many of the examples below, we show that given a feature mapping
which can model the labels of the training data precisely, overfitting occurs. That is,
if we use the training labels as the kernel matrix, we arbitrarily minimize the quality
functional. The reader who is convinced that one can arbitrarily minimize Qemp by
optimizing over a suitably large class of kernels, may skip the following examples.

Example 1 (Regularized Risk Functional) These are commonly used in SVMs
and related kernel methods (see for example Wahba [1990], Vapnik [1995] and Schölkopf
and Smola [2002]). They take on the general form

Rreg(f,Xtrain, Ytrain) :=
1
m

m∑
i=1

`(xi, yi, f(xi)) +
λ

2
‖f‖2H (2.3)

where ‖f‖2H is the RKHS norm of f . By virtue of the representer theorem (see Sec-
tion 2.4) we know that the minimizer of (2.3) can be written as a kernel expansion. This
leads to the following definition of a quality functional, for a particular cost functional
`:

Qregrisk
emp (k,Xtrain, Ytrain) := min

α∈Rm

[
1
m

m∑
i=1

`(xi, yi, [Kα]i) +
λ

2
α>Kα

]
. (2.4)

We now construct examples that minimize Equation (2.4).

• First, note that for K = βyy> and α = 1
β‖y‖2 y we have Kα = y and α>Kα =

β−1. This leads to Qregrisk
emp (k,Xtrain, Ytrain) = λ

2β . For sufficiently large β we can
make Qregrisk

emp (k,Xtrain, Ytrain) arbitrarily close to 0.

• Even if we disallow setting K arbitrarily close to zero by setting trK = 1, finding
the minimum of (2.4) can be achieved as follows: let K = 1

‖z‖2 zz
>, where z ∈ Rm,

and α = z. Then Kα = z and we obtain

1
m

m∑
i=1

l(xi, yi, [Kα]i) +
λ

2
α>Kα =

m∑
i=1

l(xi, yi, zi) +
λ

2
‖z‖22. (2.5)

Choosing each zi = argminζ l(xi, yi, ζ(xi))+ λ
2 ζ

2, where ζ are the possible hypoth-
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esis functions obtained from the training data, yields the minimum with respect
to z. Since yi = zi for all i, (2.5) tends to zero and the regularized risk is lower
bounded by zero, we can still arbitrarily minimize Qregrisk

emp .

Example 2 (Negative Log-Posterior) This functional is similar to Rreg, as it in-
cludes a regularization term (in this case the negative log prior), a loss term (the neg-
ative log-likelihood), and additionally, the log-determinant of K [Schölkopf and Smola,
2002, Chapter 16]. The latter measures the size of the space spanned by K. This leads
to the following quality functional:

Qlogpos
emp (k,Xtrain, Ytrain) := min

f∈Rm

[
− log p(yi|xi, fi) +

1
2
f>K−1f +

1
2

log detK
]

(2.6)

This quality functional also has a non meaningful minimizer. Note that any K

which does not have full rank will send (2.6) to −∞, hence Qemp is minimized trivially.
If we fix the determinant of K to be some constant to ensure that K is full rank, we
can set

K = β‖y‖−2yy> + β−
1

m−1 (1− ‖y‖−2yy>) (2.7)

which leads to |K| = 1. Under the assumption that the minimum of − log p(yi, xi, fi)
with respect to fi is attained at fi = yi, we can see that β −→ ∞ leads to the overall
minimum of Qlogpos

emp (k,Xtrain, Ytrain).

Example 3 (Cross Validation) Cross validation is a widely used method for esti-
mating the generalization error of a particular learning algorithm. Specifically, the
leave-one-out cross validation is an almost unbiased estimate of the generalization er-
ror [Luntz and Brailovsky, 1969]. The quality functional for classification using kernel
methods is given by:

Qloo
emp(k,Xtrain, Ytrain) = min

α∈Rm

[
1
m

m∑
i=1

−yisign([Kα]i)

]
, (2.8)

which was optimized in Duan et al. [2003] and Meyer et al. [2003].

Choosing K = yy> and αi = 1
‖yi‖2 y

i, where αi and yi are the vectors with the ith
element set to zero, we have Kα = y. Hence we can achieve perfect prediction. For a
validation set of larger size, i.e. k-fold cross validation, the same result can be achieved
by defining a corresponding α.

Example 4 (Kernel Target Alignment) This quality functional was introduced by
Cristianini et al. [2001] to assess the alignment of a kernel with training labels. It is
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defined by

Qalignment
emp (k,Xtrain, Ytrain) := 1− y>Ky

‖y‖22‖K‖2
. (2.9)

Here ‖y‖2 denotes the `2 norm of the vector of observations and ‖K‖2 is the Frobenius
norm, i.e., ‖K‖22 := trKK> =

∑
i,j K

2
ij. This quality functional was optimized in

Lanckriet et al. [2004].

We show that this quality functional is not immune to overfitting. By decomposing
K into its eigensystem we see that (2.9) is minimized, if K = yy>, in which case

Qalignment
emp (k∗, Xtrain, Ytrain) = 1− y>yy>y

‖y‖22‖yy>‖2
= 1− ‖y‖42

‖y‖22‖y‖22
= 0. (2.10)

It is clear that we cannot expect that Qalignment
emp (k∗, X, Y ) = 0 for data other than that

chosen to determine k∗, in other words, a restriction of the class of kernels is required.

Example 5 (Luckiness for Classification with Kernels) Recently the concept of
algorithmic luckiness [Herbrich and Williamson, 2002] was introduced to assess the
quality of an estimate in a sample and algorithm dependent fashion. We define the
quality functional for a kernel method to be:

Qluckiness
emp (k,Xtrain, Ytrain) := min

j∈N

{
j >

(
εj(Xtrain)‖α‖1

Γ(Xtrain,Ytrain)(wα)

)2
}

where εj(Xtrain) is the smallest ε such that {φ(x1), . . . , φ(xn)} can be covered by at most
j balls of radius ε, α is the vector (dual coefficients) of the maximum margin solution,
wα, is the corresponding weight vector, φ is the feature mapping corresponding to k,
and Γ(Xtrain,Ytrain)(wα) is the normalized margin min(x,y)∈(Xtrain,Ytrain)

yi〈φ(xi),wα〉
‖φ(xi)‖‖wα‖ .

For K = yy>, we can cover the feature space by balls of radius 1, that is εj(Xtrain) 6

1 for all j > 2. Since the algorithmic luckiness framework depends on the choice of
a particular algorithm, we have to choose a rule for generating α. We consider any
choice for which yiαi ≥ 0 and ‖α‖1 = 1, as is satisfied for SVM, linear programming
estimators, and many boosting algorithms. For this choice, the empirical error vanishes
with margin 1 and by construction ‖α‖1 = 1. Hence, Qluckiness

emp (k,Xtrain, Ytrain) = 1,
which is the global minimum.

Example 6 (Radius-Margin Bound) For SVMs without thresholding and with no
training errors, Vapnik [1998] proposed the following upper bound on the generalization
error of the classifier in terms of the radius and margin of the SVM [Bartlett and
Shawe-Taylor, 1999].
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T =
1
m

R2

γ2
(2.11)

where R and γ are the radius and the margin of the training data. We can define a
quality functional:

Qradius
emp (k,Xtrain, Ytrain) =

1
m
R2α>Kα, (2.12)

which was optimized in Chapelle et al. [2002].

We find the conditions were this quality functional is minimized in a non mean-
ingful manner. Choosing K = βyy> and α = 1

β‖y‖2 y, we obtain a bound on the
radius R2 6 β(maxi y

2
i ), and an expression for the margin, α>Kα = β−1. Therefore

Qradius
emp (k,Xtrain, Ytrain) 6 β2

m , which can be made arbitrarily close to zero by letting
β −→ 0.

The above examples illustrate how many existing methods for assessing the quality of a
kernel fit within the quality functional framework. We also saw that given a rich enough
class of kernels F , optimization of Qemp over F would result in a kernel that would be
useless for prediction purposes, in the sense that they can be made to look arbitrarily
good in terms of Qemp but with the result that the generalization performance will be
poor. This is yet another example of the danger of optimizing too much and overfitting
– there is (still) no free lunch.

2.4 Hyper Reproducing Kernel Hilbert Spaces

We now propose a method to optimize quality functionals over classes of kernels by
introducing a reproducing kernel Hilbert space on the kernel k itself, so to say, a Hyper-
RKHS. This is really just a RKHS with additional conditions on the elements. In fact,
we can have a recursive definition of an RKHS of an RKHS ad infinitum.

2.4.1 Regularized Quality Functional

We define an RKHS on kernels k : X ×X → R, simply by introducing the compounded
index set, X := X × X and by treating k as functions k : X → R:

Definition 8 (Hyper Reproducing Kernel Hilbert Space) Let X be a nonempty
set and denote by X := X ×X the compounded index set. The Hilbert space H of func-
tions k : X → R, endowed with a dot product 〈·, ·〉 (and the norm ‖k‖ =

√
〈k, k〉)

is called a Hyper Reproducing Kernel Hilbert Space if there exists a hyperkernel k :
X × X → R with the following properties:
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1. k has the reproducing property

〈k, k(x, ·)〉 = k(x) for all k ∈ H; (2.13)

in particular, 〈k(x, ·), k(x′, ·)〉 = k(x, x′).

2. k spans H, i.e. H = span{k(x, ·)|x ∈ X}.

3. k(x, y, s, t) = k(y, x, s, t) for all x, y, s, t ∈ X .

This is a RKHS with the additional requirement of symmetry in its first two ar-
guments. We define the corresponding notations for elements, kernels, and RKHS by
underlining it. What distinguishes H from a normal RKHS is the particular form of its
index set (X = X 2) and the additional condition on k to be symmetric in its second two
arguments. It is implicit in the definition that the hyperkernel is symmetric between
the pairs of arguments (since it is a kernel), that is k(x, y, s, t) = k(s, t, x, y) for all
(x, y) and (s, t) ∈ H, and hence k is a kernel in its first two arguments as well.

This approach of defining a RKHS on the space of symmetric functions of two
variables leads us to a natural regularization method. By analogy with the definition
of the regularized risk functional (2.3), we proceed to define the regularized quality
functional

Definition 9 (Regularized Quality Functional) Let X,Y be the combined train-
ing and test set of examples and labels respectively and Qemp an empirical quality func-
tional defined on the whole of H, satisfying the conditions of Theorem 5. For a positive
semidefinite kernel matrix K on X, the regularized quality functional is defined as

Qreg(k,X, Y ) := Qemp(k,X, Y ) +
λQ

2
‖k‖2H, (2.14)

where λQ > 0 is a regularization constant and ‖k‖2H denotes the RKHS norm in H.

Note that although we have possibly non positive kernels in H, we define the regu-
larized quality functional only on positive semidefinite kernel matrices. This is a slightly
weaker condition than requiring a positive semidefinite kernel k, since we only require
positivity on the data. Since Qemp depends on k only via the data, this is sufficient for
the above definition. Minimization of Qreg is less prone to overfitting than minimizing
Qemp, since the regularization term λQ

2 ‖k‖
2
H effectively controls the complexity of the

class of kernels under consideration. The complexity of this class can be derived from
the results of Bousquet and Herrmann [2002]. Regularizers other than λQ

2 ‖k‖
2
H are

possible, such as `p penalties. In this paper, we restrict ourselves to the `2 norm (2.14).
The advantage of (2.14) is that its minimizer satisfies the representer theorem.
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Corollary 10 (Representer Theorem for Hyper-RKHS) Let X be a set, Qemp

an empirical quality functional defined on the whole of H, satisfying the conditions of
Theorem 5, and X,Y the combined training and test set, then each minimizer k ∈ H
of the regularized quality functional Qreg(k,X, Y ) admits a representation of the form

k(x, x′) =
m∑
i,j

βijk((xi, xj), (x, x′)) for all x, x′ ∈ X, (2.15)

where βij ∈ R for i, j ∈ 1, . . .m.

Proof All we need to do is rewrite (2.14) so that it satisfies the conditions of Theorem 5.
Let xij := (xi, xj). Then Qemp(k,X, Y ) has the properties of a loss function, as it only
depends on k via its values at xij . Note too that the kernel matrix K also only
depends on k via its values at xij . Furthermore, λQ

2 ‖k‖
2
H is an RKHS regularizer, so

the representer theorem applies and (2.15) follows.

Corollary 10 implies that the solution of the regularized quality functional is a linear
combination of hyperkernels on the input data. This shows that even though the
optimization takes place over an entire Hilbert space of kernels, one can find the optimal
solution by choosing among a finite number.

Although Corollary 10 provides the form for the minimizer of the regularized quality
functional Qreg, the minimizer given by Equation (2.15) is not necessarily positive
semidefinite. This is because βij can be negative and we get a possibly negative kernel
in the summation. Furthermore, we do not have any guarantees that the kernel will be
positive semidefinite for examples in the test set, since our restriction in Equation (2.14)
is only on the kernel matrix. While there has been some work on learning with indefinite
kernels (for example Goldfarb [1985], Haasdonk [2003], Mary [2003]), the majority of
applications require positive semidefinite kernels. Hence we focus on learning positive
semidefinite kernels. The extension to learning with indefinite kernels is discussed in
Chapter 4.

In the following, we impose a positivity restriction on the coefficients of the hy-
perkernel expansion, that is for all i, j ∈ 1, . . . ,m, we require βi,j > 0. The condition
of positive expansion coefficients is sufficient but not necessary for the positivity of
the kernel given the hyperkernel. In actual fact, we need to impose constraints of the
type K � 0 or k is a Mercer Kernel. While the latter is almost impossible to enforce
directly, the former could be verified directly, hence imposing a constraint only on the
values of the kernel matrix k(xi, xj) rather than on the kernel function k itself. This
means that the conditions of the representer theorem apply with suitable constraints
on the coefficients βij . Given that k is positive semidefinite, and we want k to be
positive semidefinite, for each of the coefficients β11, . . . , βmm, there exists a set of αi
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and xi such that
∑m

i,j=1 αiαjk(xi, xj) = βkl. Unfortunately, this condition is difficult
to enforce in practice.

Another option is to be somewhat more restrictive and require that all expansion
coefficients βi,j > 0 and all the functions be positive semidefinite kernels. This latter
requirement can be formally stated as follows: For any fixed x ∈ X the hyperkernel k
is a kernel in its second argument; that is for any fixed x ∈ X , the function k(x, x′) :=
k(x, (x, x′)), with x, x′ ∈ X , is a positive semidefinite kernel.

Proposition 11 Given a hyperkernel, k with elements such that for any fixed x ∈ X ,
the function k(xk, xl) := k(x, (xk, xl)), with xk, xl ∈ X , is a positive semidefinite kernel,
and βij > 0 for all i, j = 1, . . . ,m, then the kernel

k(xk, xl) :=
m∑

i,j=1

βijk(xi, xj , xk, xl)

is positive semidefinite.

Proof The result is obtained by observing that positive combinations of positive
semidefinite kernels are positive semidefinite.

While this may prevent us from obtaining the minimizer of the objective function,
it yields a much more amenable optimization problem in practice, in particular if
the resulting cone spans a large enough space (as happens with increasing m). In
the subsequent derivations of optimization problems, we choose this restriction as it
provides a more tractable problem in practice. In Section 2.5, we give examples and
recipes for constructing hyperkernels. Before that, we relate our framework defined
above to Bayesian inference.

2.4.2 A Bayesian Perspective

A generative Bayesian approach to inference encodes all knowledge we might have
about the problem setting into a prior distribution. Hence, the choice of the prior
distribution determines the behaviour of the inference, as once we have the data, we
condition on the prior distribution we have chosen to obtain the posterior, and then
marginalize to obtain the label that we are interested in. One popular choice of prior is
the normal distribution, resulting in a Gaussian process (GP). All prior knowledge we
have about the problem is then encoded in the covariance of the GP. There exists a GP
analog to the Support Vector Machine (for example Opper and Winther [2000], Seeger
[1999]), which is essentially obtained (ignoring normalizing terms) by exponentiating
the regularized risk functional used in SVMs.
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In this section, we derive the prior and hyperprior implied by our framework of
hyperkernels. This is obtained by exponentiating Qreg, again ignoring normalization
terms. Given the regularized quality functional (Equation 2.14), with the Qemp set to
the SVM with squared loss, we obtain the following equation.

Qreg(k,X, Y ) :=
1
m

m∑
i=1

(yi − f(xi))2 +
λ

2
‖f‖2H +

λQ

2
‖k‖2H.

Exponentiating the negative of the above equation gives,

exp(−Qreg(k,X, Y )) =

exp

(
− 1
m

m∑
i=1

(yi − f(xi))2
)

exp
(
−λ

2
‖f‖2H

)
exp

(
−
λQ

2
‖k‖2H

)
.

(2.16)

We compare Equation (2.16) to Gaussian process estimation. The general scheme
is known in Bayesian estimation as hyperpriors [Bishop, 1995, Chapter 10], which
determine the distribution of the priors (here the GP with covariance k). Figure 2.2
describes the model of an ordinary GP, where f is drawn from a Gaussian distribution
with covariance matrix K and y is conditionally independent given f . For hyperprior
estimation, we draw the prior K from a distribution instead of setting it.

Gaussian Process ?>=<89:;?
k chosen by user // GFED@ABCK //GFED@ABCf // ?>=<89:;y

Figure 2.2: Generative model for Gaussian process estimation

To determine the distribution from which we draw the prior, we compute the hy-
perprior explicitly. For given data Z = {Xtrain, Ytrain} and applying Bayes’ Rule,

p(k|Z) =
p(Z|k)p(k)

p(Z)
1

p(Z|k)
=

p(k)
p(k|Z)p(Z)

.

Hence, the posterior is given by

p(f |Z, k) =
p(Z|f, k)p(f |k)

p(Z|k)
=

p(Z|f, k)p(f |k)p(k)
p(k|Z)p(Z)

.
(2.17)

We have the directed graphical model shown in Figure 2.3 for a Hyperkernel-GP, where
we assume that K itself is drawn according to a distribution before performing further
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steps of dependency calculation. We shall now explicitly compute the terms in the
numerator of Equation (2.17).

Hyperkernel GP ONMLHIJKk0, k
p(k|k0, k) // ?>=<89:;k p(f |k)

//GFED@ABCf p(y|f, x)
// ?>=<89:;y

Figure 2.3: Generative model for Gaussian process estimation using hyperpriors on k defined
by k.

In the following derivations, we assume that we are dealing with finite dimensional
objects, to simplify the calculations of the normalizing constants in the expressions for
the distributions. Given that we have additive Gaussian noise, that is ε ∼ N (0, 1

γε
I),

then,
p(y|f, x) ∝ exp

(
−γε

2
(y − f(x))2

)
.

Therefore, for the whole dataset (assumed to be i.i.d.),

p(Y |f,X) =
m∏

i=1

p(yi|f, xi)

=
(

2π
γε

)−m
2

exp

(
−γε

2

m∑
i=1

(yi − f(xi))2
)
.

We assume a Gaussian prior on the function f , with covariance function k. The positive
semidefinite function, k, defines an inner product 〈·, ·〉Hk

in the RKHS denoted by Hk.
Then,

p(f |k) =
(

2π
γf

)−F
2

exp
(
−
γf

2
〈f, f〉Hk

)
where F is the dimension of f and γf is a constant.

We assume a Wishart distribution [Lauritzen, 1996, Appendix C], with p degrees
of freedom and covariance k0, for the prior distribution of the covariance function k,
that is k ∼ Wm(p, k0). This is a hyperprior used in the Gaussian process literature.

p(k|k0) =
|k|

p−(m+1)
2 exp

(
−1

2tr(kk0)
)

Γm(p)|k|
p
2

where Γm(p) denotes the Gamma distribution, Γm(p) = 2
pm
2 π

m(m−1)
4

∏m
i=1 Γ

(
p−i+1

2

)
.

For more details of the Wishart distribution, the reader is referred to Lauritzen [1996]
and Robert [2001].

Observe that tr(kk0) is an inner product between two matrices. We can define a
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general inner product between two matrices, as the inner product defined in the RKHS
denoted by H.

p(k|k0, k) =
|k|

p−(m+1)
2 exp

(
−1

2〈k, k0〉H
)

Γm(p)|k|
p
2

We can interpret the above equation as measuring the similarity between the co-
variance matrix that we obtain from data and the expected covariance matrix (given
by the user). This similarity is measured by a dot product defined by k. Substituting
the expressions for p(Y |X, f), p(f |k) and p(k|k0, k) into the posterior (Equation 2.17),
we get Equation (2.18) which is of the same form as the exponentiated negative quality
(Equation 2.16).

exp

(
−γε

2

m∑
i=1

(yi − f(xi))2
)

exp
(
−
γf

2
〈f, f〉Hk

)
exp

(
−1

2
〈k, k0〉H

)
. (2.18)

In a nutshell, we assume that the covariance function of the GP k, is distributed
according to a Wishart distribution. In other words, we have two nested processes,
a Gaussian and a Wishart process, to model the data generation scheme. Hence we
are studying a mixture of Gaussian processes. Note that the MAP2 (maximum a
posteriori-2) method [MacKay, 1994] in Bayesian estimation leads to the same opti-
mization problems as those arising from minimizing the regularized quality functional.

2.5 Hyperkernels

Having introduced the theoretical basis of the Hyper-RKHS, it is natural to ask whether
k exist which satisfy the conditions of Definition 8. We address this question by giving
a set of general recipes for building such kernels.

2.5.1 Power Series Construction

Suppose k is a kernel such that k(x, x′) ≥ 0 for all x, x′ ∈ X , and suppose g : R → R is
a function with positive Taylor expansion coefficients g(ξ) =

∑∞
i=0 ciξ

i and convergence
radius R. Then for pointwise positive k(x, x′) ≤

√
R,

k(x, x′) := g(k(x)k(x′)) =
∞∑
i=0

ci(k(x)k(x′))i (2.19)

is a hyperkernel. For k to be a hyperkernel, we need to check that firstly, k is a
kernel, and secondly, for any fixed x, k(x, (x, x′)) is a kernel. To see this, observe that
for any fixed x, k(x, (x, x′)) is a sum of kernel functions, hence it is a kernel itself
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(since kp(x, x′) is a kernel if k is, for p ∈ N). To show that k is a kernel, note that
k(x, x′) = 〈Φ(x),Φ(x′)〉, where Φ(x) := (

√
c0,
√
c1k

1(x),
√
c2k

2(x), . . .). Note that we
require pointwise positivity, so that the coefficients of the sum in Equation (2.19) are
always positive. The Gaussian RBF kernel satisfies this condition, but polynomial
kernels of odd degree are not always pointwise positive. In the following example, we
use the Gaussian kernel to construct a hyperkernel.

Example 7 (Harmonic Hyperkernel) Suppose k a kernel with range [0, 1], (RBF
kernels satisfy this property), and set ci := (1 − λh)λi

h, i ∈ N, for some 0 < λh < 1.
Then we have

k(x, x′) = (1− λh)
∞∑
i=0

(
λhk(x)k(x′)

)i =
1− λh

1− λhk(x)k(x′)
. (2.20)

For k(x, x′) = exp(−σ2‖x− x′‖2) this construction leads to

k((x, x′), (x′′, x′′′)) =
1− λh

1− λh exp (−σ2(‖x− x′‖2 + ‖x′′ − x′′′‖2))
. (2.21)

As one can see, for λh → 1, k converges to δx,x′, and thus ‖k‖2H converges to the
Frobenius norm of k on X × X .

It is straightforward to find other hyperkernels of this sort, simply by consulting tables
on power series of functions. Table 2.2 contains a short list of suitable expansions.
This hyperkernel can be thought of as a “parameter tuning” kernel, as it generates a
sequence of kernel widths σ2, σ4, . . ., which is generated by the power series expansion.

g(ξ) Power series expansion Radius of Convergence
exp ξ 1 + 1

1!ξ + 1
2!ξ

2 + 1
3!ξ

3 + . . .+ 1
n!ξ

n + . . . ∞
sinh ξ 1

1!ξ + 1
3!ξ

3 + 1
5!ξ

5 + . . .+ 1
(2n+1)!ξ

(2n+1) + . . . ∞
cosh ξ 1 + 1

2!ξ
2 + 1

4!ξ
4 + . . .+ 1

(2n)!ξ
(2n) + . . . ∞

arctanhξ ξ
1 + ξ3

3 + ξ5

5 + . . .+ ξ2n+1

2n+1 + . . . 1

− ln(1− ξ) ξ
1 + ξ2

2 + ξ3

3 + . . .+ ξn

n + . . . 1

Table 2.2: Hyperkernels by Power Series Construction.

However, if we want the kernel to adapt automatically to different widths for each
dimension, we need to perform the summation that led to (2.20) for each dimension
in its arguments separately. Such a hyperkernel corresponds to ideas developed in
automatic relevance determination (ARD) [MacKay, 1994, Neal, 1996].
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Example 8 (Hyperkernel for ARD) Let kΣ(x, x′) = exp(−dΣ(x, x′)), where we
define a distance by dΣ(x, x′) = (x − x′)>Σ(x − x′), and Σ a diagonal covariance
matrix. Take sums over each diagonal entry Σii separately to obtain

k((x, x′), (x′′, x′′′)) = (1− λh)
∑

diag(σ
n1
1 ,...,σ

nd
d )

∑
i

(
λhkΣ(x, x′)kΣ(x′′, x′′′)

)i(2.22)

=
d∏

i=1

1− λh

1− λh exp (−σi((xi − x′i)2 + (x′′i − x′′′i )2))
.

Here the sum goes over all (σn1
1 , . . . , σnd

d ) with ni ∈ N, i = 1, . . . , d. A similar definition
also allows us to utilize a distance metric d(x, x′) which is a generalized radial distance
as defined by Haussler [1999].

2.5.2 Hyperkernels Invariant to Translation

Another approach to constructing hyperkernels is to utilize an extension of a result due
to Smola et al. [1998] concerning the Fourier transform of translation invariant kernels.

Theorem 12 (Translation Invariant Hyperkernel) Suppose k((x1−x′1), (x2−x′2))
is a function which depends on its arguments only via x1 − x′1 and x2 − x′2. Let
F1k(ω, (x2−x′2)) denote the Fourier transform with respect to (x1−x′1). If k(τ, τ ′) ≥ 0
for all τ, τ ′, and F1k(ω, (x′′ − x′′′)) ≥ 0 for all (x′′ − x′′′) and ω, then the function k is
a hyperkernel.

Proof From [Smola et al., 1998] we know that for k to be a kernel in one of its argu-
ments, its Fourier transform has to be nonnegative. This yields the second condition.
Next, we need to show that k is a kernel in its own right. Mercer’s condition requires
that for arbitrary f the following is positive:∫

f(x1, x
′
1)f(x2, x

′
2)k((x1 − x′1), (x2 − x′2))dx1dx

′
1dx2dx

′
2

=
∫
f(τ1 + x′1, x

′
1)f(τ2 + x′2, x

′
2)dx

′
1dx

′
2k(τ1, τ2)dτ1dτ2

=
∫
g(τ1)g(τ2)k(τ1, τ2)dτ1dτ2

where τ1 = x1− x′1 and τ2 = x2− x′2. Here g is obtained by integration over x1 and x2

respectively. The latter is exactly Mercer’s condition on k, when viewed as a function
of two variables only.

This means that we can check whether a radial basis function (e.g. Gaussian RBF,
exponential RBF, damped harmonic oscillator, generalized Bn spline), can be used to
construct a hyperkernel by checking whether their Fourier transform is positive.
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2.5.3 Explicit Expansion

If we have a finite set of kernels that we want to choose from, this results in a hyperk-
ernel which is a finite sum of possible kernel functions. This setting is similar that of
Lanckriet et al. [2002].

Suppose ki(x, x′) is a kernel for each i = 1, . . . , n (e.g. the RBF kernel or the
polynomial kernel), then for ci > 0,

k(x, x′) :=
n∑

i=1

ciki(x)ki(x′), ki(x) > 0,∀x (2.23)

is a hyperkernel, as can be seen by an argument similar to that of section 2.5.1. k is a
kernel since k(x, x′) = 〈Φ(x),Φ(x′)〉, where Φ(x) := (

√
c1k1(x),

√
c2k2(x), . . . ,

√
cnkn(x)).

Example 9 (Polynomial and RBF combination) Let k1(x, x′) = (〈x, x′〉 + b)2p

for some choice of b ∈ R and p ∈ N, and k2(x, x′) = exp(−σ2‖x− x′‖2). Then,

k((x1, x
′
1), (x2, x

′
2)) = c1(〈x1, x

′
1〉+ b)2p(〈x2, x

′
2〉+ b)2p

+c2 exp(−σ2‖x1 − x′1‖2) exp(−σ2‖x2 − x′2‖2)
(2.24)

is a hyperkernel.

For a particular application, it is common to have several possible choices of rep-
resentation and hence kernel functions. Even with fixed data representation, there are
many possible choices of kernels for a particular data structure. In this setting, having
an explicit expansion would allow the user to let the data determine the best kernel.

2.5.4 Summary of Hyper-RKHS

To learn the kernel, we use an approach similar to structural risk minimization. We
achieve this by defining a quality functional which measures the performance of a given
kernel, and a regularization term which is the squared norm of the kernel. This norm
is defined by the inner product of the RKHS on the space of kernels itself. This inner
product can be thought of as a generalised version of the inner product between two
square matrices. The formulation gives rise to a hierarchical Bayesian interpretation,
where the estimator is drawn from a Gaussian process which in turn is defined by the
covariance matrix which is drawn from a Wishart process. We then proceed to show
several examples of hyperkernels which can be used for estimation. In the following
chapter, we express the regularised quality functional Qreg as a convex optimization
problem.
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Chapter 3

Machine Learning with

Hyperkernels

This chapter presents a semidefinite programming formulation for the problem of min-
imizing the regularized quality functional Qreg, as defined in Chapter 2. In Section 3.1,
we derive specific semidefinite programs (SDPs), using the approach of Lanckriet et al.
[2004], for several common SVMs and Alignment. Experimental results for binary
classification, regression and novelty detection are presented in Section 3.2.

3.1 Optimization Problem

We will now consider the optimization of the quality functionals utilizing hyperker-
nels. We choose the regularized risk functional as the empirical quality functional,
that is we set Qemp(k,X, Y ) := Rreg(f,X, Y ). It is possible to utilize other quality
functionals, such as the Alignment (Example 15). We focus our attention on the regu-
larized risk functional, which is commonly used in SVMs. For a particular loss function
l(xi, yi, f(xi)), we obtain the regularized quality functional,

min
k∈H

min
f∈H

1
m

m∑
i=1

`(xi, yi, f(xi)) +
λ

2
‖f‖2H +

λQ

2
‖k‖2H, (3.1)

where H is the RKHS associated with kernel k, and H is the hyper-RKHS. By the
representer theorem (Theorem 5 and Corollary 10) we can write the regularizers as
quadratic terms,

min
β

min
α

1
m

m∑
i=1

`(xi, yi, f(xi)) +
λ

2
α>Kα+

λQ

2
β>Kβ (3.2)

where α ∈ Rm are the coefficients of the kernel expansion (Equation 1.3), and β ∈ Rm2

are the coefficients of the hyperkernel expansion (Equation 2.15). Using the approach

31
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in Lanckriet et al. [2004], the corresponding optimization problems for various loss
functions can be expressed as SDPs. In general, solving a SDP would be take longer
than solving a quadratic program (a traditional SVM is a quadratic program). This
reflects the added cost incurred for optimizing over a class of kernels.

3.1.1 Semidefinite Programming Formulations

Semidefinite programming [Vandenberghe and Boyd, 1996] is the optimization of a
linear objective function subject to constraints which are linear matrix inequalities and
affine equalities.

Definition 13 (Semidefinite Program) A semidefinite program (SDP) is a prob-
lem of the form:

min
x

c>x

subject to F0 +
q∑

i=1

xiFi � 0 and Ax = b
(3.3)

where x ∈ Rq are the decision variables, A ∈ Rp×q, b ∈ Rp, c ∈ Rq, and Fi ∈ Rr×r are
given. X � 0 denotes that X is positive semidefinite.

In general, linear constraints Ax+ a > 0 can be expressed as a semidefinite constraint
diag(Ax+ a) � 0, and a convex quadratic constraint (Ax+ b)>(Ax+ b)− c>x− d 6 0
can be written as [

I Ax+ b

(Ax+ b)> c>x+ d

]
� 0,

using the Schur complement lemma (Theorem 39). When t ∈ R, we can write the
quadratic constraint a>Aa 6 t as ‖A

1
2a‖2 6 t. In practice, linear and quadratic

constraints are simpler and faster to implement in a convex solver and hence the above
substitutions are rarely made.

We derive the corresponding SDP for Equation (3.1). The following proposition al-
lows us to derive a SDP from a class of general convex programs. It follows the approach
in Lanckriet et al. [2004], with some care taken with Schur complements of positive
semidefinite matrices [Albert, 1969], and its proof can be found in Appendix A.1.

Proposition 14 (Quadratic Minimax) Let m,n,M ∈ N and H : Rn → Rm×m and
c : Rn → Rm be linear maps. Let A ∈ RM×m and a ∈ RM . Also, let d : Rn → R and
G(ξ) be a function and the further constraints on ξ respectively. Then the optimization
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problem
min
ξ∈Rn

max
x∈Rm

−1
2x

>H(ξ)x− c(ξ)>x+ d(ξ)

subject to H(ξ) � 0
Ax+ a > 0
G(ξ) � 0

(3.4)

can be rewritten as

min
t,ξ,γ

1
2 t+ a>γ + d(ξ)

subject to


diag(γ) 0 0 0

0 G(ξ) 0 0
0 0 H(ξ) (A>γ − c(ξ))
0 0 (A>γ − c(ξ))> t

 � 0
(3.5)

in the sense that the ξ which solves (3.5) also solves (3.4).

Specifically, when we have the regularized quality functional, d(ξ) is quadratic, and
hence we obtain an optimization problem which has a mix of linear, quadratic and
semidefinite constraints.

Corollary 15 Let H, c,A and a be as in Proposition 14, and Σ � 0. Then the solution
ξ∗ to the optimization problem

min
ξ

max
x

−1
2x

>H(ξ)x− c(ξ)>x+ 1
2ξ
>Σξ

subject to H(ξ) � 0
Ax+ a > 0
ξ > 0

(3.6)

can be found by solving the semidefinite programming problem

min
t,t′,ξ,γ

1
2 t+ 1

2 t
′ + a>γ

subject to γ > 0
ξ > 0
‖Σ

1
2 ξ‖2 6 t′[

H(ξ) (A>γ − c(ξ))
(A>γ − c(ξ))> t

]
� 0

(3.7)

Proof By applying Proposition 14, and introducing an auxiliary variable t′ which
upper bounds the quadratic term of ξ, the claim is proved.
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Comparing the objective function in Equation (3.6) with Equation (3.2), we observe
that H(ξ) and c(ξ) are linear in ξ. Let ξ′ = εξ. As we vary ε the constraints are still
satisfied, but the objective function scales with ε. Since ξ is the coefficient in the
hyperkernel expansion, this implies that we have a set of possible kernels which are
just scalar multiples of each other. To avoid this, we add an additional constraint on ξ
which is 1>ξ = c, where c is a constant. This breaks the scaling freedom of the kernel
matrix. As a side-effect, the numerical stability of the SDP improves considerably. We
chose a linear constraint so that it does not add too much overhead to the optimization
problem.

We make one additional simplification of the optimization problem, which is to
replace the upper bound of the squared norm (‖Σ

1
2 ξ‖2 6 t′) with and upper bound on

the norm (‖Σ
1
2 ξ‖ 6 t′).

3.1.2 Examples of Hyperkernel Optimization Problems

From the general framework above, we derive several examples of machine learning
problems, specifically binary classification, regression, single class (also known as nov-
elty detection) and alignment problems. The following examples illustrate our method
for simultaneously optimizing over the class of kernels induced by the hyperkernel,
as well as the hypothesis class of the machine learning problem. We consider machine
learning problems based on kernel methods which are derived from Equation (3.1). The
derivation is basically by application of Corollary 15, and are shown in Appendix A.2.

In this subsection, we define the following notation. For p, q, r ∈ Rn, n ∈ N let
r = p ◦ q be defined as element by element multiplication, ri = pi × qi. The pseudo-
inverse (or Moore-Penrose inverse) of a matrix K is denoted K†. Let ~K be the m2

by 1 vector formed by concatenating the columns of an m by m matrix. We define
the hyperkernel Gram matrix K by putting together m2 of these vectors, that is we
set K = [ ~Kpq]mp,q=1. Other notations include: the kernel matrix K = reshape(Kβ)
(reshaping a m2 by 1 vector, Kβ, to a m by m matrix), Y =diag(y) (a matrix with y

on the diagonal and zero everywhere else), G(β) = Y KY (the dependence on β is made
explicit), I the identity matrix, 1 a vector of ones and 1m×m a matrix of ones. Let w
be the weight vector and boffset the bias term in feature space, that is the hypothesis
function in feature space is defined as g(x) = w>φ(x) + boffset where φ(·) is the feature
mapping defined by the kernel function k.

The number of training examples is assumed to be m, that is Xtrain = {x1, . . . , xm}
and Ytrain = y = {y1, . . . , ym}. Where appropriate, γ and χ are Lagrange multipliers,
while η and ξ are vectors of Lagrange multipliers from the derivation of the Wolfe dual
for the SDP, β are the hyperkernel coefficients, t1 and t2 are the auxiliary variables.



§3.1 Optimization Problem 35

When η ∈ Rm, we define η > 0 to mean that each ηi > 0 for i = 1, . . . ,m.

Example 10 (L1 SVM (C-parameterization)) A commonly used support vector
classifier, the C-SVM [Bennett and Mangasarian, 1992, Cortes and Vapnik, 1995] uses
an L1 soft margin, l(xi, yi, f(xi)) = max(0, 1 − yif(xi)), which allows errors on the
training set. The parameter C is given by the user. Setting the quality functional
Qemp(k,X, Y ) = minf∈H

1
m

∑m
i=1 l(xi, yi, f(xi)) + 1

2C ‖w‖
2
H, the resulting SDP is

min
β,γ,η,ξ

1
2 t1 + C

mξ
>1 + λQ

2 t2

subject to η > 0, ξ > 0, β > 0
‖K

1
2β‖ 6 t2,1>β = 1[
G(β) z

z> t1

]
� 0,

(3.8)

where z = γy + 1 + η − ξ.
The value of the support vector coefficients, α, which optimizes the corresponding

Lagrange function is G(β)†z, and the classification function, f = sign(K(α◦y)−boffset),
is given by f = sign(KG(β)†(y ◦ z)− γ).

Example 11 (Linear SVM (ν-style)) An alternative parameterization of the `1 soft
margin was introduced by Schölkopf et al. [2000], where the user defined parameter
ν ∈ [0, 1] controls the fraction of margin errors and support vectors. Using ν-SVM as
Qemp, that is, for a given ν, Qemp(k,X, Y ) = minf∈H

1
m

∑m
i=1 ζi + 1

2‖w‖
2
H − νρ subject

to yif(xi) > ρ− ζi and ζi > 0 for all i = 1, . . . ,m. The corresponding SDP is given by

min
β,γ,η,ξ,χ

1
2 t1 − χν + ξ> 1

m + λQ

2 t2

subject to χ > 0, η > 0, ξ > 0, β > 0
‖K

1
2β‖ 6 t2,1>β = 1[
G(β) z

z> t1

]
� 0

(3.9)

where z = γy + χ1 + η − ξ.
The value of the support vector coefficients, α, which optimizes the corresponding

Lagrange function is G(β)†z, and the classification function, f = sign(K(α◦y)−boffset),
is given by f = sign(KG(β)†(y ◦ z)− γ).

Example 12 (Quadratic SVM) Instead of using an `1 loss class, Mangasarian and
Musicant [2001] uses an `2 loss class,

l(xi, yi, f(xi)) =

{
0 if yif(xi) > 1
(1− yif(xi))2 otherwise

,
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and regularized the weight vector as well as the bias term, that is the empirical quality
functional is set to Qemp(k,X, Y ) = minf∈H

1
m

∑m
i=1 ζ

2
i + 1

2(‖w‖2H + b2offset) subject to
yif(xi) > 1− ζi and ζi > 0 for all i = 1, . . . ,m. This is also known as the Lagrangian
SVM. The resulting dual SVM problem has fewer constraints, as is evidenced by the
smaller number of Lagrange multipliers needed in the SDP below.

min
β,η

1
2 t1 + λQ

2 t2

subject to η > 0, β > 0
‖K

1
2β‖ 6 t2,1>β = 1[
H(β) (η + 1)

(η + 1)> t1

]
� 0

(3.10)

where H(β) = Y (K + 1m×m + λmI)Y , and z = γ1 + η − ξ.
The value of the support vector coefficients, α, which optimizes the corresponding

Lagrange function is H(β)†(η+1), and the classification function, f = sign(K(α◦y)−
boffset), is given by f = sign(KH(β)†((η + 1) ◦ y) + y>(H(β)†(η + 1))).

Example 13 (Single class SVM) For unsupervised learning, the single class SVM
computes a function which captures regions in input space where the probability density
is in some sense large Schölkopf et al. [2001]. The quality functional Qemp(k,X, Y ) =
minf∈H

1
νm

∑m
i=1 ζi+

1
2‖w‖

2
H−ρ subject to f(xi) > ρ−ζi, and ζi > 0 for all i = 1, . . . ,m,

and ρ > 0. The corresponding SDP for this problem, also known as novelty detection,
is shown below.

min
β,γ,η,ξ

1
2 t1 + ξ> 1

νm − γ + λQ

2ν t2

subject to η > 0, ξ > 0, β > 0
‖K

1
2β‖ 6 t2,1>β = 1[
K z

z> t1

]
� 0

(3.11)

where z = γ1+η−ξ, and ν ∈ [0, 1] a user selected parameter controlling the proportion
of the data to be classified as novel.

The score to be used for novelty detection is given by f = Kα−boffset , which reduces
to f = η − ξ, by substituting α = K†(γ1 + η − ξ), boffset = γ1 and K = reshape(Kβ).

Example 14 (ν-Regression) We derive the SDP for ν regression [Schölkopf et al.,
2000], which automatically selects the ε insensitive tube for regression. As in the ν-SVM
case in Example 11, the user defined parameter ν controls the fraction of errors and sup-
port vectors. Using the ε-insensitive loss, l(xi, yi, f(xi)) = max(0, |yi− f(xi)| − ε), and
the ν-parameterized quality functional, Qemp(k,X, Y ) = minf∈HC

(
νε+ 1

m

∑m
i=1(ζi + ζ∗i )

)
subject to f(xi) − yi 6 ε − ζi, yi − f(xi) 6 ε − ζ∗i , ζ(∗)

i > 0 for all i = 1, . . . ,m and
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ε > 0. The corresponding SDP is

min
β,γ,η,ξ,χ

1
2 t1 + χν

λ + ξ> 1
mλ + λQ

2λ t2

subject to χ > 0, η > 0, ξ > 0, β > 0
‖K

1
2β‖ 6 t2,1>β = stddev(Ytrain)[
F (β) z

z> t1

]
� 0

, (3.12)

where z =

[
−y
y

]
− γ

[
1

−1

]
+ η − ξ − χ

[
1

1

]
and F (β) =

[
K −K
−K K

]
.

The Lagrange function is minimized for α = F (β)†z, and substituting into f =
Kα− boffset , we obtain the regression function f =

[
−K K

]
F (β)†z − γ.

Example 15 (Kernel Target Alignment) For the Kernel Target Alignment approach
[Cristianini et al., 2001], Qemp = y>Ky, we directly minimize the regularized quality
functional, obtaining the following optimization problem,

min
k∈H

−1
2y

>Ky + λQ

2 β
>Kβ

subject to β > 0

which can be expressed as:

min
β

1
2 t1 + λQ

2 t2

subject to β > 0
‖K

1
2β‖2 6 t2[
K y

y> t1

]
� 0

(3.13)

Note that for the case of Alignment, Qemp does not provide a direct formulation for the
hypothesis function, but instead, it determines a kernel matrix K. This kernel matrix,
K, can be utilized in a traditional SVM, to obtain a classification function.

3.2 Experiments

In the following experiments, we use data from the UCI repository [Blake and Merz,
1998]. Where the data attributes are numerical, we do not perform any preprocessing
of the data. Boolean attributes are converted to {−1, 1}, and categorical attributes are
arbitrarily assigned an order, and numbered {1, 2, . . .}. The SDPs were solved using
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SeDuMi [Sturm, 1999], and YALMIP [Löfberg, 2002] was used to convert the equations
into standard form. We used the hyperkernel for automatic relevance determination
(Equation 2.22) for the hyperkernel optimization problems. The scaling freedom that
this hyperkernel provides for each dimension means we do not have to normalize data
to some arbitrary distribution.

For the classification and regression experiments, the datasets were split into 100
random permutations of 60% training data and 40% test data. We deliberately did
not attempt to tune parameters and instead made the following choices uniformly for
all datasets in classification, regression and novelty detection:

• The kernel width σi, for each dimension, was set to 50 times the 90% quantile of
the value of |xi − xj | over all the training data. This ensures sufficient coverage
without having too wide a kernel. This value was estimated from a random
sampling of the training data.

• λ was adjusted so that 1
λm = 100 (that is C = 100 in the Vapnik-style parame-

terization of SVMs). This has commonly been reported to yield good results.

• ν = 0.3. While this is clearly suboptimal for many datasets, we decided to choose
it beforehand to avoid having to change any parameter. Clearly we could use
previous reports on generalization performance to set ν to this value for better
performance. For novelty detection, ν = 0.1 (see Section 3.2.5 for details).

• λh for the Harmonic Hyperkernel was chosen to be 0.6, giving adequate coverage
over various kernel widths in (2.20) (small λh focus almost exclusively on wide
kernels, λh close to 1 will treat all widths equally).

• The hyperkernel regularization constant was set to λQ = 1.

• For the scale breaking constraint 1>β = c, c was set to 1 for classification as the
hypothesis class only utilizes the sign of the trained function, and therefore is
scale free. However, for regression, c is set to the standard deviation of Ytrain, so
that the hyperkernel coefficients are of the same scale as the output (the constant
offset boffset takes care of the mean).

Note that the SDP provides the coefficients of the linear combination of kernels βij ,
as well as the coefficients of the support vectors αi. In the following experiments, these
coefficients were used to compute the hypothesis function. Therefore, there is no need
for an additional optimization step for finding the best hypothesis.
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3.2.1 Low Rank Approximation

Although the optimization of Equation (3.1) has reduced the problem of optimizing over
two possibly infinite dimensional Hilbert spaces to a finite problem, it is still formidable
in practice as there are m2 coefficients for β. For an explicit expansion of type in
Equation (2.23) one can optimize in the expansion coefficients ki(x)ki(x′) directly,
which leads to a quality functional with an `2 penalty on the expansion coefficients.
Such an approach is appropriate if there are few terms in (2.23).

In the general case (or if the explicit expansion has many terms), one can utilize
a low-rank approximation, as described by Fine and Scheinberg [2001]. This entails
picking from {k((xi, xj), ·)|1 ≤ i, j ≤ m} a small fraction of terms, p (where m2 � p),
which approximate k on Xtrain × Xtrain sufficiently well. In particular, we choose an
m× p truncated lower triangular matrix G such that ‖PkP> −GG>‖F 6 η, where P
is the permutation matrix which sorts the eigenvalues of k into decreasing order, and
η is the level of approximation needed. The norm, ‖ · ‖F is the Frobenius norm. In the
following experiments, the hyperkernel matrix was approximated to η = 10−6 using
the incomplete Cholesky factorization method [Bach and Jordan, 2002].

3.2.2 Classification Experiments

Several binary classification datasets1 from the UCI repository were used for the ex-
periments. A set of synthetic data (labeled syndata in the results) sampled from
two Gaussians was created to illustrate the scaling freedom between dimensions. The
first dimension had a standard deviation of 1000 whereas the second dimension had a
standard deviation of 1 (a sample result is shown in Figure 2.1). The results of the
experiments are shown in Table 3.1.

From Table 3.1, we observe that our method achieves state of the art results for
all the datasets, except the “heart” dataset. We also achieve results much better than
previously reported for the “credit” dataset. Comparing the results for C-SVM and
Tuned SVM, we observe that our method is always equally good, or better than a
C-SVM tuned using 10-fold cross validation.

In an attempt to lower the computational time required for the experiments, we
also performed low rank approximation of the kernel matrix, which effectively is a
selection of a subset of the training data. Table 3.2 shows the results obtained when
we approximate the kernel matrix using a tolerance of 10−6. The number of data
points selected was forced to be between 80 and 300, to control the size of the kernel
matrix. The rightmost two columns are repeated from Table 3.1. The results from
the approximate problem were all within one standard deviation of the method using

1We classified window vs. non-window for glass data, the other datasets are all binary.
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Data C-SVM ν-SVM Lag-SVM Best other CV Tuned SVM (C)
syndata 2.8±2.4 1.9±1.9 2.4±2.2 NA 5.9±5.4 (108)
pima 23.5±2.0 27.7±2.1 23.6±1.9 23.5 24.1±2.1 (104)

ionosph 6.6±1.8 6.7±1.8 6.4±1.9 5.8 6.1±1.8 (103)
wdbc 3.3±1.2 3.8±1.2 3.0±1.1 3.2 5.2±1.4 (106)
heart 19.7±3.3 19.3±2.4 20.1±2.8 16.0 23.2±3.7 (104)

thyroid 7.2±3.2 10.1±4.0 6.2±3.1 4.4 5.2±2.2 (105)
sonar 14.8±3.7 15.3±3.7 14.7±3.6 15.4 15.3±4.1 (103)
credit 14.6±1.8 13.7±1.5 14.7±1.8 22.8 15.3±2.0 (108)
glass 6.0±2.4 8.9±2.6 6.0±2.2 NA 7.2±2.7 (103)

Table 3.1: Hyperkernel classification: Test error and standard deviation in percent. The
second, third and fourth columns show the results of the hyperkernel optimizations of C-SVM
(Example 10), ν-SVM (Example 11) and Lagrangian SVM (Example 12) respectively. The
results in the fifth column shows the best results from Freund and Schapire [1996], Rätsch et al.
[2001] and Meyer et al. [2003]. The rightmost column shows a C-SVM tuned in the traditional
way. A Gaussian RBF kernel was tuned using 10-fold cross validation on the training data,
with the best value of C shown in brackets. A grid search was performed on (C, σ). The values
of C tested were {10−2, 10−1, . . . , 109}. The values of the kernel width, σ, tested were between
10% and 90% quantile of the distance between a pair of sample of points in the data. These
quantiles were estimated by a random sample of 20% of the training data.

all the data points. This shows the potential of using a subset of the training data
to obtain an equally good classification result. The second column shows the average
value of the constant η used in the approximation.

Data Approx. η C-SVM ν-SVM Lag-SVM other CV SVM (C)
syndata 0 2.9±2.4 1.9±1.9 2.4±2.1 NA 5.9±5.4 (108)
pima 4× 10−7 23.8±2.0 27.2±2.3 24.1±1.9 23.5 24.1±2.1 (104)

ionosph 5× 10−7 6.6±2.0 6.8±1.8 6.4±1.9 5.8 6.1±1.8 (103)
wdbc 3× 10−4 3.3±1.2 3.8±1.2 3.0±1.1 3.2 5.2±1.4 (106)
heart 2× 10−7 19.5±3.3 19.4±2.5 20.1±2.8 16.0 23.2±3.7 (104)

thyroid 1× 10−9 6.0±3.1 7.2±3.6 5.5±2.6 4.4 5.2±2.2 (105)
sonar 3× 10−15 14.8±3.7 15.6±3.8 14.8±3.5 15.4 15.3±4.1 (103)
credit 1× 10−4 14.8±1.8 13.8±1.6 14.8±1.8 22.8 15.3±2.0 (108)
glass 3× 10−7 5.9±2.4 8.5±2.6 5.8±2.2 NA 7.2±2.7 (103)

Table 3.2: Approximate kernel classification: Test error and standard deviation in percent

Ong et al. [2003] reported results which were based on an optimization problem
where we iteratively alternated between optimizing the kernel coefficients and hyperk-
ernel coefficients. This could potentially result in a local minima. In that setting, the
regularized quality functional performed poorly on the Ionosphere dataset. This is not
the case here, where we optimize using a SDP. Note that the results here for the tuned
C-SVM (rightmost column) for the synthetic data and the credit data have improved
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over our earlier results (see [Ong and Smola, 2003]). This was because we only searched
up till C = 106 in our earlier work, and we searched further for our current results.
This demonstrates another advantage of the hyperkernel optimization over parameter
selection using cross validation, we can only search a finite number of values (usually
only a small number of these) for each parameter. Since the publication of this work
in Ong et al. [2003] and Ong and Smola [2003], there have been improvements in the
optimization problem from the semidefinite programs derived in Section 3.1.2 to second
order cone programs [Tsang and Kwok, 2004].

3.2.3 Effect of λQ and λh on Classification Error

In order to investigate the effect of varying the hyperkernel regularization constant, λQ,
and the Harmonic Hyperkernel parameter, λh, we performed experiments using the C-
SVM hyperkernel optimization (Example 10). We performed two sets of experiments
with each of our chosen datasets. The results shown in Table 3.3.

λh λQ

Data Error Deviation Error Deviation
syndata 3.0±1.1 2.2 2.8±0.0 2.2
pima 25.7±2.6 1.9 24.5±0.1 1.5

ionosph 6.6±1.0 1.7 7.2±0.1 1.9
wdbc 2.9±0.4 0.9 2.7±0.2 0.8
heart 19.7±2.0 3.0 19.4±0.9 2.8

thyroid 6.5±2.8 3.0 6.7±0.3 3.7
sonar 15.7±1.6 3.4 15.1±0.2 3.3
credit 16.0±1.8 1.6 14.7±0.4 1.6
glass 5.9±1.0 2.3 5.2±0.3 2.3

Table 3.3: Effect of varying λh and λQ on classification error. In the left experiment, we fixed
λQ = 1, and λh was varied with the values λh = {0.1, 0.2, . . . , 0.9, 0.92, 0.94, 0.96, 0.98}.In the
right, we set λh = 0.6 and varied λQ = {10−4, 10−3, . . . , 105}. The error columns (columns 2
and 4) report the average error on the test set and the standard deviation of the error over
the different parameter settings. The deviation columns (columns 3 and 5) report the average
standard deviation over 10 random 60%/40% splits.

From Table 3.3 and Figure 3.1, we observe that the variation in classification accu-
racy over the whole range of the hyperkernel regularization constant, λQ is less than
the standard deviation of the classification accuracies of the various datasets (com-
pare with Table 3.1). This demonstrates that our method is quite insensitive to the
regularization parameter over the range of values tested for the various datasets.

The method shows a higher sensitivity to the harmonic hyperkernel parameter,
λh (Figure 3.2). Since this parameter effectively selects the scale of the problem, by
selecting the “width” of the kernel, it is to be expected that each dataset would have a
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different ideal value of λh. It is to be noted that the generalization accuracy at λh = 0.6
is within one standard deviation (see Table 3.1) of the best accuracy achieved over the
whole range tested.

Figure 3.1: Effect of varying λQ on classification error. We set λh = 0.6 and varied λQ =
{10−4, 10−3, . . . , 105}. The empirical error of the Sonar dataset is zero for all values of λQ.

3.2.4 Regression Experiments

To demonstrate that we can solve problems other than binary classification using the
same framework, we performed regression and novelty detection. The results of re-
gression are shown in Table 3.4. We utilized the same parameter settings as in the
previous section. The second column shows the results from the hyperkernel optimiza-
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Figure 3.2: Effect of varying λh on classification error. We fixed λQ = 1, and λh was varied
with the values λh = {0.1, 0.2, . . . , 0.9, 0.92, 0.94, 0.96, 0.98}.
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tion of the ν-regression (Example 14). The results in the third column shows the best
results from [Meyer et al., 2003]. The rightmost column shows a ε-SVR with a Gaus-
sian kernel tuned using 10-fold cross validation on the training data. Similar to the
classification setting, grid search was performed on (C, σ). The values of C tested were
{10−2, 10−1, . . . , 109}. The values of the kernel width, σ, tested were between 10% and
90% quantile of the distance between a pair of sample of points in the data. These
quantiles were estimated by a random sample of the training data.

Data ν-SVR Best other Tuned ε-SVM
auto-mpg 7.76±1.05 7.11 9.61±1.18
boston 12.02±2.25 9.60 15.04±3.31

auto imports(×106) 4.42±1.04 0.25 5.76±1.28
cpu(×103) 4.25±2.89 3.16 9.79±7.29

servo 0.79±0.16 0.25 0.57±0.14

Table 3.4: Hyperkernel regression: Mean Squared Error

Meyer et al. [2003] used a 90%/10% split of the data for their experiments, while we
used a 60%/40% split, which may account for the better performance in the cpu and
servo datasets. The reason for the much better rate reported on the “auto imports”
dataset remains a mystery.

3.2.5 Novelty Detection

We apply the single class support vector machine to detect outliers in the USPS data.
The test set of the default split in the USPS database was used in the following ex-
periments. The parameter ν was set to 0.1 for these experiments, hence selecting up
to 10% of the data as outliers. Since there is no quantitative method for measuring
the performance of novelty detection, we cannot directly compare our results with the
traditional single class SVM. We can only subjectively conclude, by visually inspecting
a sample of the digits, that our approach works for novelty detection of USPS digits.
Figures 3.3 to 3.11 shows a sample of the digits 1 to 9 respectively. The top rows shows
the digits identified as ‘novel’, and the bottom row shows ‘common’ digits.

3.3 Summary

We have shown that when the empirical quality functional is the regularized risk func-
tional, the resulting optimization problem is convex. We derive several examples of
common estimators for classification, regression and novelty detection. Since we can
optimize over the whole class of kernel functions, we can define more general kernels
which may have many free parameters, without overfitting. The experimental results
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Figure 3.3: Top: Images of digit ‘1’ considered novel by algorithm; Bottom: Common images
of digit ‘1’

Figure 3.4: Top: Images of digit ‘2’ considered novel by algorithm; Bottom: Common images
of digit ‘2’

Figure 3.5: Top: Images of digit ‘3’ considered novel by algorithm; Bottom: Common images
of digit ‘3’



46 Machine Learning with Hyperkernels

Figure 3.6: Top: Images of digit ‘4’ considered novel by algorithm; Bottom: Common images
of digit ‘4’

Figure 3.7: Top: Images of digit ‘5’ considered novel by algorithm; Bottom: Common images
of digit ‘5’

Figure 3.8: Top: Images of digit ‘6’ considered novel by algorithm; Bottom: Common images
of digit ‘6’
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Figure 3.9: Top: Images of digit ‘7’ considered novel by algorithm; Bottom: Common images
of digit ‘7’

Figure 3.10: Top: Images of digit ‘8’ considered novel by algorithm; Bottom: Common images
of digit ‘8’

Figure 3.11: Top: Images of digit ‘9’ considered novel by algorithm; Bottom: Common images
of digit ‘9’
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on classification demonstrate that it is possible to achieve the state of the art. Further-
more, the same framework and parameter settings work for various datasets as well as
regression and novelty detection.

It is important to stress that our approach has made support vector estimation
more automated. Parameter adjustment is less critical compared to the case when the
kernel is fixed.



Chapter 4

Learning with Indefinite Kernels

In this chapter we show that kernel methods can be adapted to deal with indefinite
kernels, that is, kernels which are not positive semidefinite. They do not satisfy Mercer’s
condition and they induce associated functional spaces called reproducing kernel Krĕın
spaces (RKKS) (Section 4.2), a generalization of reproducing kernel Hilbert spaces
(RKHS).

Machine learning in RKKS shares many “nice” properties of learning in RKHS,
such as orthogonality and projection. However, since the kernels are indefinite, we can
no longer minimize the loss, instead we stabilize it (Section 4.3). We show a general
representer theorem for constrained stabilization and prove generalization bounds by
computing the Rademacher averages of the kernel class (Section 4.4). We list several
examples of indefinite kernels and show some results on the spectrum of the operators
useful for machine learning (Section 4.5).

4.1 Why Non-Positive Kernels?

Almost all current research on kernel methods in machine learning focuses on functions
k(x, x′) which are positive semidefinite. That is, it focuses on kernels which satisfy
Mercer’s condition and which consequently can be seen as scalar products in some
Hilbert space.

In Chapter 2 of this thesis, the proposed approach to learning the kernel results
in a linear combination of positive semidefinite kernels. However, an arbitrary linear
combination of positive kernels is not necessarily positive semidefinite [Mary, 2003]. For
example, a class formed by scaled versions of a single positive semidefinite kernel will
have negative kernels as well, when the scalar coefficient is negative. While the elements
of the associated vector space of kernels can always be defined as the difference between
two positive kernels, what is the functional space associated with such a kernel?

The purpose of this chapter is to point out that there is a much larger class of
kernel functions available, which do not necessarily correspond to a RKHS but which

49



50 Learning with Indefinite Kernels

nonetheless can be used for machine learning. Such kernels are known as indefinite
kernels, as the scalar product matrix may contain a mix of positive and negative eigen-
values. Apart from the above motivation, there are several other independent reasons
for studying indefinite kernels:

• Testing Mercer’s condition for a given kernel can be a challenging task which may
well lie beyond the abilities of a practitioner.

• Sometimes functions which can be proven not to satisfy Mercer’s condition may
be of interest. One such instance is the hyperbolic tangent kernel k(x, x′) =
tanh(〈x, x′〉 − 1) of Neural Networks [Haykin, 1999], which is indefinite for any
range of parameters or dimensions [Smola et al., 2000].

• There have been promising empirical reports on the use of indefinite kernels [Lin
and Lin, 2003].

• In H∞ control applications and discriminant analysis, the cost function can be
formulated as the difference between two quadratic norms [Haasdonk, 2003, Has-
sibi et al., 1999], corresponding to an indefinite inner product.

• The solution of partial differential equations arising from the Navier-Stokes equa-
tions for fluid flow results in an indefinite problem.

• RKKS theory (concerning function spaces arising from indefinite kernels) has
become a rather active area in interpolation and approximation theory [Dritschel
and Rovnyak, 1996, Alpay et al., 1997, Rovnyak, 2002].

We will discuss the above issues using topological spaces similar to Hilbert spaces
except for the fact that the inner product is no longer necessarily positive.

4.2 Reproducing Kernel Krein Spaces

Krĕın spaces are indefinite inner product spaces endowed with a Hilbertian topology,
yet their inner product is no longer positive. Before we delve into definitions and state
basic properties of Krĕın spaces, we give an example:

Example 16 (4 dimensional space-time) Indefinite spaces were first used by Minkowski
for the solution of problems in special relativity. There the inner product in space-time
(x, y, z, t) is given by

〈(x, y, z, t), (x′, y′, z′, t′)〉 = xx′ + yy′ + zz′ − tt′.
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Observe that it is not positive. The vector v = (1, 1, 1,
√

3) belongs to the cone of so-
called neutral vectors which satisfy 〈v, v〉 = 0 (in coordinates x2 + y2 + z2 − t2 = 0).
In special relativity this cone is also called the “light cone,” as it corresponds to the
propagation of light from a point event.

4.2.1 Krĕın spaces

The above example shows that there are several differences between Krĕın spaces and
Hilbert Spaces. We now define Krĕın spaces formally. More detailed expositions can
be found in Bognár [1974] and Azizov and Iokhvidov [1989]. The key difference is the
fact that the inner products are indefinite.

Definition 16 (Inner product) Let K be a vector space on the scalar field.1 An
inner product 〈., .〉K on K is a bilinear form where for all f, g, h ∈ K, α ∈ R:

• 〈f, g〉K = 〈g, f〉K

• 〈αf + g, h〉K = α〈f, h〉K + 〈g, h〉K

• 〈f, g〉K = 0 for all g ∈ K implies ⇒ f = 0

An inner product is said to be positive if for all f ∈ K we have 〈f, f〉K ≥ 0. It is
negative if for all f ∈ K 〈f, f〉K ≤ 0. Otherwise it is called indefinite.

A vector space K embedded with the inner product 〈., .〉K is called an inner product
space. Two vectors f, g of an inner product space are said to be orthogonal if 〈f, g〉K =
0. Given an inner product, we can define the associated space.

Definition 17 (Krĕın space) An inner product space (K, 〈., .〉K) is a Krĕın space if
there exist two Hilbert spaces H+,H− spanning K such that

• All f ∈ K can be decomposed into f = f+ + f−, where f+ ∈ H+ and f− ∈ H−.

• ∀f, g ∈ K, 〈f, g〉K = 〈f+, g+〉H+ − 〈f−, g−〉H−

This suggests that there is an associated Hilbert space, where the difference in scalar
products is replaced by a sum:

Definition 18 (Associated Hilbert Space) Let K be a Krĕın space with decompo-
sition into Hilbert spaces H+ and H−. Then we denote by K the associated Hilbert
space defined by

K = H+ ⊕H− hence 〈f, g〉K = 〈f+, g+〉H+ + 〈f−, g−〉H−
1Like Hilbert spaces, Krĕın spaces can be defined on R or C. We use R in this thesis.
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Likewise we can introduce the symbol 	 to indicate that

K = H+ 	H− hence 〈f, g〉K = 〈f+, g+〉H+ − 〈f−, g−〉H− .

K is the smallest Hilbert space majorizing the Krĕın space K and one defines the strong
topology on K as the Hilbertian topology of K. The topology does not depend on the
decomposition chosen. In fact the majorization means that |〈f, f〉K| 6 ‖f‖2K for all
f ∈ K. The decomposition K = H+ 	 H− is called the fundamental decomposition
of the Krĕın space K, and associated with it is the fundamental symmetry J defined
for f+ ∈ H+ and f− ∈ H−, as J(f+ + f−) = f+ − f−. In essence the fundamental
symmetry can be thought of as the identity operator in Krĕın spaces.

Definition 19 (Adjoint Operator) Let T : K1 → K2 be a bounded linear operator
between Krĕın spaces K1 and K2. Then the adjoint operator T ∗ of T is defined to be
the unique operator such that [Bognár, 1974, Section VI.2]

〈Tf, g〉K2 = 〈f, T ∗g〉K1 where f ∈ K1, g ∈ K2.

Riesz representation theorem holds in Krĕın spaces [Mary, 2003, Theorem 2.9] and
therefore (like Hilbert spaces) Krĕın spaces are self dual.

The space K is said to be Pontryagin if it admits a decomposition with finite
dimensional H−, and Minkowski if K itself is finite dimensional. Note that every finite
dimensional inner product space is decomposable, therefore every finite dimensional
non-degenerate inner product space is a Krĕın space [Bognár, 1974, Section I.11]. We
will see how Pontryagin spaces arise naturally when dealing with conditionally positive
definite kernels (see Section 4.2.4).

For estimation we need to introduce Krĕın spaces on functions. Let X be the
learning domain, and RX the set of functions from X to R. The evaluation functional
tells us the value of a function at a certain point, and we shall see that the RKKS is a
subset of RX where this functional is continuous.

Definition 20 (Evaluation functional)

Tx : K → R where f 7→ Txf = f(x).

Definition 21 (RKKS) A Krĕın space (K, 〈., .〉K) is a Reproducing Kernel Krĕın
Space [Alpay, 2001, Chapter 7] if K ⊂ RX and the evaluation functional is contin-
uous on K endowed with its strong topology (that is, via K).
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4.2.2 From Krĕın spaces to Kernels

We prove an analog to the Moore-Aronszajn theorem [Wahba, 1990], which tells us
that for every kernel there is an associated Krĕın space, and for every RKKS, there is
a unique kernel.

Proposition 22 Let K be an RKKS with K = H+ 	H−. Then

1. H+ and H− are RKHS (with kernels k+ and k−),

2. There is a unique symmetric k(x, x′) with k(x, ·) ∈ K such that for all f ∈ K,
〈f, k(x, ·)〉K = f(x),

3. k = k+ − k−.

Proof Since K is a RKKS, the evaluation functional is continuous with respect to the
strong topology. Hence the associated Hilbert Space K is an RKHS. It follows that H+

and H−, as Hilbertian subspaces of an RKHS, are RKHS themselves with kernels k+

and k− respectively. Let f = f+ + f−. Then Tx(f) is given by

Tx(f) = Tx(f+) + Tx(f−)
= 〈f+, k+(x, ·)〉H+ − 〈f−,−k−(x, ·)〉H−
= 〈f, k+(x, ·)− k−(x, ·)〉K.

In both lines we exploited the orthogonality of H+ with H−. Since k+ and k− are sym-
metric, k := k+− k− is symmetric. Since the inner product 〈·, ·〉K is non-degenerate, k
is unique.

4.2.3 From Kernels to Krĕın spaces

Let k be a symmetric real valued function on X 2.

Proposition 23 The following are equivalent [Mary, 2003, Theorem 2.28]:

• There exists (at least) one RKKS with kernel k.

• k admits a positive decomposition, that is there exists two positive kernels k+ and
k− such that k = k+ − k−.

• k is dominated by some positive kernel p (that is, p− k is a positive kernel).

There is no bijection but a surjection between the set of RKKS and the set of gener-
alized kernels defined in the vector space generated out of the cone of positive kernels.
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4.2.4 Examples and Spectral Properties

We collect several examples of indefinite kernels in Table 4.1 and plot a 2 dimensional
example as well as 20 of the eigenvalues with the largest absolute value. We investigate
the spectrum of radial kernels using the Hankel transform.

Kernel 2D kernel 20 Eigenvalues Spectra
Epanechnikov kernel(
1− ‖s−t‖2

σ

)p
, for ‖s−t‖2

σ 6 1

Gaussian Combination

exp
(
−‖s−t‖2

σ1

)
+ exp

(
−‖s−t‖2

σ2

)
− exp

(
−‖s−t‖2

σ3

)
Multiquadric kernel√

‖s−t‖2
σ + c2

Thin plate spline

‖s−t‖
σ

2p
ln
(
‖s−t‖2

σ

)

Table 4.1: Examples of indefinite kernels. Column 2 shows the 2D surface of the kernel with
respect to the origin, column 3 shows plots of the 20 eigenvalues with largest magnitude of
uniformly spaced data from the interval [−2, 2], column 4 shows plots of the Fourier spectra.

Isometries commuting with symmetry groups, such as the Fourier transform or
decompositions according to spherical harmonics are ideally suited to analyzing the
spectral properties of kernels. The Fourier transform allows one to find the eigenvalue
decomposition of kernels of the form k(x, x′) = h(x − x′) by computing the Fourier
transform of h. For x ∈ Rn we have

F [f ](‖ω‖) = ‖ω‖−νHν [rνh(r)](‖ω‖),

where ν = 1
2n− 1 and Hν is the Hankel transform of order ν. Bochner’s Theorem (for

example Reed and Simon [1980, Theorem IX.9], and as used in Smola et al. [1998]) tells
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us that a kernel is positive semidefinite if and only if its Fourier spectrum is positive.
Table 4.1 depicts the spectra of these kernels. Negative values in the Hankel transform
correspond to H−, positive ones to H+. Likewise the decomposition of k(x, x′) =
h(〈x, x′〉) in terms of associated Legendre polynomials allows one to identify the positive
and negative parts of the Krĕın space, as the Legendre polynomials commute with the
rotation group [Smola et al., 2000].

One common class of translation invariant kernels which are not positive definite
are so-called conditionally positive definite (cpd) kernels. A cpd kernel of order p leads
to a positive semidefinite matrix in a subspace of coefficients orthogonal to polynomials
of order up to p−1. Moreover, in the subspace of (p−1) degree polynomials, the inner
product is typically negative definite. This means that there is a space of polynomials
of degree up to order p− 1 (which constitutes an up to

(
n+p−2

p−1

)
-dimensional subspace)

with negative inner product. In other words, we are dealing with a Pontryagin space.

The standard procedure to use such kernels is to project out the negative compo-
nent, replace the latter by a suitably smoothed estimate in the polynomial subspace
and treat the remaining subspace as any RKHS [Wahba, 1990]. Using Krĕın spaces
we can use these kernels directly, without the need to deal with the polynomial parts
separately.

4.3 Machine Learning in RKKS

In this section we show how to express machine learning problems with indefinite
kernels. In order to perform machine learning, we would like to optimize over a class of
functions, and also to prove that the solution exists and is unique. Instead of minimizing
over a class of functionals as in a RKHS, we look for the stationary point. It turns out
that this point can be found using projections onto the subspace spanned by the kernel
functions evaluated on the data. Although we can derive the general framework for
Tikhonov regularization for Krĕın space, this approach as several practical difficulties.
We will present an alternative form of regularization in Chapter 5.

Researchers have been aware of the limitation of positive semidefinite kernels, and
several attempts have been made to extend the class of kernels. Schölkopf [2001] pro-
posed a framework for machine learning with conditionally positive definite kernels,
which as mentioned above, define a Pontryagin space. This framework was further
investigated in Pekalska et al. [2001]. The motivations for these papers were to gener-
alize kernels to measure dissimilarities. Graepel et al. [1999] performed learning where
the measure between objects was indefinite. However, their approach assumed the
knowledge of the positive and negative parts of the spectrum.
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4.3.1 Projection and Stabilization

Given some data Xtrain = {x1, . . . , xm}, and labels Ytrain = {y1, . . . , ym}, we consider
the interpolation problem of finding the function f(xi) = yi. Let T : K → Rm be the
evaluation functional (Definition 20) where f 7→ Tf = [f(x1), . . . , f(xm)]>, that is T
maps the function f from the RKKS K to the vector consisting of the evaluation of
this function on the input data xi ∈ X . Note that Rm has the standard Hilbertian
topology defined on it. Hence the interpolation problem is finding a function f ∈ K
such that for y ∈ Rm,

Tf = y. (4.1)

In other words, for the given training labels y = Ytrain, we want a function f such that
the evaluation fits the labels. There may be numerous solutions to this problem. In
Hilbert space, the solution is to choose the function with minimal norm. This is called
the minimal norm interpolation problem. Details of the minimal norm interpolation
problem and its relationship to the pseudo-inverse are described in Albert [1972] and
Groetsch [1977]. We derive the details of interpolation in Krĕın spaces. Observe that
the difficulty lies in the fact that we do not have a norm in Krĕın space.

Define T ∗ : Rm → K, the adjoint operator of T such that 〈Tf, α〉Rm = 〈f, T ∗α〉K,
where α ∈ Rm. From the left hand side,

〈Tf, α〉Rm =
m∑

i=1

αif(xi) (by the definition of T )

=
m∑

i=1

αi〈f(·), k(·, xi)〉K (K is a reproducing kernel Krĕın space)

= 〈f(·),
m∑

i=1

αik(·, xi)〉K (by linearity of the inner product)

Therefore the adjoint maps α ∈ Rm to T ∗α =
∑m

i=1 αik(xi, ·), where k(·, ·) is the kernel
associated with K. The operator TT ∗ has a special meaning

TT ∗α = T

m∑
i=1

αik(xi, ·)

=

[
m∑

i=1

αik(xi, x1), . . . ,
m∑

i=1

αik(xi, xm)

]>
= Kα

(4.2)

where K is the Gram matrix defined by Kij = k(xi, xj). For simplicity, we assume that
K is regular. Hence, the operator TT ∗ is actually the finite dimensional gram matrix
K.
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Using the notation defined above, we investigate the variational approach. The
variational formulation expresses the primal problem as an equality for all dual vari-
ables. Since the dual space of Rm is itself, given T and y, we want to find f such
that

〈v, Tf〉Rm = 〈v, y〉Rm for all v ∈ Rm. (4.3)

The solution of Equation (4.3) is called a weak solution of Equation (4.1). The following
proposition shows that the solution to the interpolation problem is the orthogonal
projection.

Proposition 24 Define the solution set F = {f ∈ K such that Tf = y}, that is for
all f ∈ F , Tf = y. Define the finite dimensional solution set A = {α ∈ Rm such that
Kα = y}. Then F is the set {T ∗α+ u where α ∈ A and u ∈ K such that Tu = 0}.

Proof From Equation (4.3), for all v ∈ Rm, g ∈ F and f ∈ K such that f 6= g,

〈v, Tf − y〉Rm = 0
〈v, Tf − Tg〉Rm = 0
〈v, T (f − g)〉Rm = 0
〈T ∗v, f − g〉K = 0.

Observe that the above equation is true for all v ∈ Rm and g ∈ F , hence T ∗v is or-
thogonal to f − g. Therefore f is the orthogonal projection, in K, of g onto R(T ∗).
This means that there exists an α ∈ Rm such that f = T ∗α+ u where Tu = 0. Hence
solving Tf = y is equivalent to solving TT ∗α = y, and by Equation (4.2) we get the
result.

In a Hilbert space, then the orthogonal projection is given by [Brezinski, 1997],

min
α∈Rm

1
2
‖T ∗α− g‖2 = min

α∈Rm

1
2
α>TT ∗α− α>Tg

= min
α∈Rm

1
2
α>Kα− α>y.

(4.4)

In the case of Krĕın spaces, Equation (4.4) does not have a solution, since we have
a possibly negative norm. The following calculation demonstrates this phenomenon.
Denote the solution of Equation (4.1) by f∗, where f∗ ∈ K and y ∈ Rm, and the
corresponding coefficients by α∗. Define a quadratic functional

J(α) =
1
2
〈α,Kα〉 − 〈y, α〉. (4.5)

By considering the behavior of the optimal value of α = α∗, we can see that we cannot
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minimize Equation (4.5). Let e = α−α∗, be the error of our estimate from its optimal
value. Then, using (4.5),

J(α) = 1
2〈α

∗ + e,K(α∗ + e)〉 − 〈y, α∗ + e〉
= 1

2〈α
∗,Kα∗〉 − 〈y, α∗〉+ 1

2〈e,Ke〉 − 〈e,Kα
∗〉 − 〈y, e〉 (symmetry)

= J(α∗) + 1
2〈e,Ke〉. (Kα∗ = y)

Since K is indefinite, the second term on the right hand side can be negative, and
therefore, unlike the case when K is positive, J(α∗) is not the minimizer of (4.5).
However, we can still find the stationary point. Observe that if K is positive, we
obtain the orthogonal projection as J(α) is equal to Equation (4.4). Therefore, for
indefinite K, we solve for the stationary point of J(α) as defined by Equation (4.5).

Proposition 25 The solution to Equation (4.1), is given by T ∗α, where α = α∗ is
the stationary point of J(·) (Equation 4.5). At the stationary point, for invertible K,
J(α∗) = −1

2〈α
∗,Kα∗〉 = 1

2〈y,K
−1y〉.

Proof Since f∗ is a solution of Equation (4.1), TT ∗α∗ = Kα∗ = y. Substituting this
into the gradient, we get ∇J(α∗) = Kα∗ − y = 0, which shows that J(·) is stationary
at α∗. From Equation (4.5),

J(α∗) =
1
2
〈α∗,Kα∗〉 − 〈y, α∗〉 = −1

2
〈α∗,Kα∗〉,

since 〈y, α∗〉 = 〈α∗,Kα∗〉. Furthermore, for regular K, α∗ = K−1y, which gives the
second equality.

The results above show that the optimum point Equation (4.1) can be found by finding
the stationary point of Equation (4.5). In fact, we can make a much more general
statement when performing stabilization.

4.3.2 Application to general spline smoothing

We consider the general spline smoothing problem as presented in Wahba [1990], except
we are considering Krĕın spaces. The general spline smoothing is defined as the function
stabilizing (that is finding the stationary point) the following criterion:

J(f) =
1
m

m∑
i=1

(
yi − f(xi)

)2 + λ〈f, f〉K. (4.6)
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The solution can be found using,

J(f) = 1
2〈Tf − y, Tf − y〉Rm + λ

2 〈f, f〉K
= 1

2f
>T>Tf − y>Tf + 1

2y
>y + λ

2 〈f, f〉K.

The gradient is given by

∇J(f) = (T>T + λJ)f − T>y,

where J is the fundamental symmetry, with possibly ±1 along the diagonal, and hence
the stationary point occurs at

(T>T + λJ)f = T>y.

Note that the effect of λ no longer necessarily improves the condition number of the
linear problem. In fact, if λ is equal to an eigenvalue of T>T , the system is singular.

We will investigate the smoothing problem in further detail in Section 5.3.2 and
Section 6.2.

4.4 Generalization Bounds via Rademacher Average

An important issue regarding learning algorithms are their ability to generalize (to give
relevant predictions). This property is obtained when the learning process considered
shows an uniform convergence behaviour. In Mendelson [2003] such a result is demon-
strated in the case of RKHS through the control of the Rademacher average of the
class of function considered. Here we present an adaptation of this proof in the case of
Krĕın spaces. We begin with setting the functional framework for the result.

Let k be a kernel defined on a set X and choose a decomposition k = k+ − k−

where k+ and k− are both positive kernels. This given decomposition of the kernel
can be associated with the RKHS K defined by its positive kernel k = k+ + k− whose
Hilbertian topology defines the strong topology of K. We will then consider the set BK
defined as follows:

BK =
{
f ∈ K

∣∣ ‖f+‖2 + ‖f−‖2 = ‖f‖2 ≤ 1
}

Note that in a Krĕın space the norm of a function is the associated Hilbertian norm
and usually ‖f‖2 6= 〈f, f〉K but always 〈f, f〉K ≤ ‖f‖2.

The Rademacher average of a class of functions F with respect to a measure µ is
defined as follows. Let x1, . . . , xm ∈ X be i.i.d random variables sampled according to
µ. Let εi for i = 1, . . . ,m be Rademacher random variables, that is variables taking
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values {−1,+1} with equal probability.

Definition 26 (Rademacher Average) The Rademacher average, Rm(F) of a set
of functions F (w.r.t. µ) is defined as

Rm(F) = EµEε
1√
m

sup
f∈F

∣∣∣ m∑
i=1

εif(xi)
∣∣∣.

Using the Rademacher average as an estimate of the “size” of a function class, we can
obtain generalization error bounds which are also called uniform convergence or sample
complexity bounds [Mendelson, 2003, Corollary 3], that is for any ε > 0 and δ > 0,
there is an absolute constant C such that if

m >
C

ε2
max{R2

m(J(BK)), log
1
δ
}, (4.7)

then

Pr
(

sup
f∈BK

∣∣∣ 1
m

m∑
i=1

J(f(Xi))− EJ(f)
∣∣∣ ≥ ε

)
≤ δ (4.8)

where J(f(x)) denotes the quadratic loss defined as in Mendelson [2003]. To get the
expected result we have to show that the Rademacher average is bounded by a constant
independent of the sample size m. To control the Rademacher average, we first give
a lemma regarding the topology of Krĕın spaces putting emphasis on both difference
and close relationship with the Hilbertian case.

Lemma 27 For all g ∈ K:

sup
f∈BK

〈f(.), g(.)〉K = ‖g‖

Proof It is trivial if g = 0. ∀g ∈ K, g 6= 0, let h = g/‖g‖. By construction ‖h‖ = 1.

sup
f∈BK

〈f(.), g(.)〉K = ‖g‖ sup
f∈BK

〈f(.), h(.)〉K

= ‖g‖ sup
f∈BK

(
〈f+, h+〉K+ − 〈f−, h−〉K−

)
= ‖g‖

(
〈h+, h+〉K+ + 〈h−, h−〉K−

)
= ‖g‖

In the unit ball of a RKKS, the Rademacher average with respect to the probability
measure µ behaves the same way as the one of its associated RKHS.
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Proposition 28 (Rademacher Average of an Indefinite Kernel) Let K be the
Gram matrix of kernel k at points x1, . . . , xm. If according to the measure µ on X
x 7−→ k(x, x) ∈ L1(X , µ), then

Rm(BK) ≤M
1
2

with
M =

1
m

Eµ

(
tr
(
K
))

=
∫
X
k(x, x)dµ(x)

The proof works just as in the Hilbertian case [Mendelson, 2003, Theorem 16] with
the application of Lemma 27, and is shown in Appendix B. As a second slight difference
we choose to express the bound as a function of the L1(X , µ) norm of the kernel instead
of going through its spectral representation. It is simpler since for instance, for the
unnormalized Gaussian kernel k(x, y) = exp(−(x − y)2) on X = R we have M = 1
regardless the measure µ considered.

Hence from Proposition 28, we can bound the generalization error by using Equa-
tions (4.7) and (4.8).

4.5 Spectrum of the Evaluation Operator

If A is a compact linear self-adjoint operator on a Krĕın space, then A can be diagonal-
ized [Azizov and Iokhvidov, 1989, Chapter 4]. Furthermore, operators of the form A =
T ∗T can be fundamentally decomposed into its positive and negative parts [Bognár,
1974, Chapter VII]. In this section, we investigate the special case when we have
A = T ∗T where T is an evaluation operator from a Krĕın space to a Hilbert space.
These results will be useful for the analysis of regularization methods (Section 5.3)
and reconstruction error bounds for principal component analysis (Section 6.1). In
particular we will analyze various regularization methods in terms of the spectrum of
the kernel and use Proposition 30 in the proof of Theorem 38.

Recall that TT ∗ = K. From the spectral decomposition theorem (see Golub and
van Loan [1996, Theorem 8.1.1] for the matrix version and Reed and Simon [1980,
Chapter 7] for the general Hilbert space version), TT ∗ has the eigenvalue decomposition
TT ∗ = UΛU>, where Λ = diag(λ1, . . . , λm), is the diagonal matrix of the eigenvalues
λ of TT ∗, and the column vectors of U are the corresponding eigenvectors u1, . . . , um.
Therefore, we can write TT ∗ui = λiui, for i = 1, . . . ,m.

For a Krĕın space K, let L(K) = {T : K → K} be the class of continuous linear
operators. If A ∈ L(K) is a compact self-adjoint operator on a Krĕın space, there exists
an orthonormal basis {ei} of K of eigenfunctions of A. Let spec(A) be the spectrum of
such an operator, sorted in non-increasing order of magnitude |λ1(A)| > |λ2(A)| > . . ..
An operator A is called trace class if

∑
i>1〈Aei, ei〉K is a convergent series. We denote
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the trace of the operator A by trA =
∑

i>1〈Aei, ei〉Ksign〈ei, ei〉K [Azizov and Iokhvidov,
1989, pg. 223]. We would like to relate the spectrum of the kernel operator with the
spectrum of the covariance operator, as done in the finite dimensional context by
Shawe-Taylor et al. [2002] and in the Hilbert space context by Zwald et al. [2004].

Note that unlike the Hilbertian case, the spectrum of a self-adjoint operator in
Krĕın space need not be real, as the following example shows.

Example 17 [Bognár, 1974, pg. 35] Let {e, f} be a basis of the indefinite inner product
space X , where

〈e, e〉 = 〈f, f〉 = 0, 〈e, f〉 = 1.

A linear operator specified by the relations

Ae = ie, Af = −if

is symmetric.

However, since the operator T has a range which is a subset of a Hilbert space, we
can show that the operator T ∗T has real eigenvalues. Moreover, the spectrums of TT ∗

and T ∗T are the same.

Proposition 29 Let vi be the set of orthogonal vectors in K, defined as

vi :=
1√
|λi|

T ∗ui,

then
T ∗Tvi = λivi and spec(TT ∗) ∪ {0} = spec(T ∗T ) ∪ {0}.

Proof For vi, vj corresponding to eigenvectors ui, uj ∈ Rm, for i 6= j, 〈vi, vj〉 = 0, since
〈ui, uj〉 = 0. However, unlike the positive semidefinite case, since λi is not necessarily
non-negative, 〈vi, vi〉 = ±1. From the definition of vi, we obtain T ∗ui =

√
|λi|vi, and

Tvi = λi√
|λi|
ui. Hence T ∗Tvi = λivi. Observe that the spectrum of T ∗T is the same as

the spectrum of TT ∗, with the possibility of zero being part of the spectrum of either
one.

When we are dealing with a random variable X that is independent and identically
distributed according to P , there corresponds a space of functions determined by k(X, ·)
where k is the reproducing kernel. The covariance operator of these functions and the
kernel operator

(Kf)(x) =
∫
f(y)k(x, y)dP (y),
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have the same spectrum.

Proposition 30 Let T : K → L2 be the evaluation operator, and T ∗ its adjoint.
Let k(·, ·) be a kernel such that E(k(X,X)) < ∞. Then, C = T ∗T is the covari-
ance operator, and K = TT ∗ is the integral operator associated with the kernel k(·, ·).
Furthermore, spec(C) = spec(K) and K is a self-adjoint trace class operator and
trK =

∑
i>1 λi(K).

Proof Following the proof of Zwald et al. [2004, Theorem 1], we get T ∗(f) =
E[f(X)k(X, ·)] for a random variable X. By definition of expectation, for all f, f ′ ∈ K,

〈f, T ∗Tf ′〉 = 〈f,E[k(X, ·)〈k(X, ·), f ′〉]〉
= E[〈k(X, ·), f〉〈k(X, ·), f ′〉].

Hence, by uniqueness of the covariance operator, we get C = T ∗T . Similarly,

(TT ∗f)(x) = 〈T ∗f, k(x, ·)〉
= E[〈f(X)k(X, ·), k(X, ·)〉]
=
∫
f(y)k(x, y)dP (y).

Since T is a compact operator, by the spectral decomposition spec(C) = spec(K) and
trC = trK =

∑
i>1 λi(K).

Note that although the covariance operator C has possibly negative eigenvalues,
for any f ∈ K, 〈f, Cf〉K > 0. Corresponding to the eigenvalues of TT ∗, we can
define the notion of a singular value, and hence the singular value decomposition.
Denote the tensor product between vectors by ⊗, that is for u, x ∈ Rm and v, f ∈ K,
(v ⊗ u)x = 〈u, x〉Rmv, and (u⊗ v)f = 〈v, f〉Ku.

Proposition 31 Let σi =
√
|λi|, we can define the singular value decomposition of the

operators T and T ∗ by

T =
m∑

i=1

σiui ⊗ vi and T ∗ =
m∑

i=1

σivi ⊗ ui,

which gives us the pair

T ∗ui = σivi and Tvi = σiui〈vi, vi〉K.

Proof We can show this by just substitution of the definitions.

Note that this is almost exactly like the Hilbertian case, except the difference in sign



64 Learning with Indefinite Kernels

due to the term 〈vi, vi〉K.

Recall that in Hilbert space, the minimal norm solution to the interpolation problem
is the projection of 0 onto the set of solutions {f ∈ H such that Tf = y}. Using this
notion of projection, we can show the specific representation of the functions in K
in terms of their eigenvalues and eigenvectors. The following proposition shows the
form of the pseudo-inverse f = T †y in Equation (4.9), and Equation (4.10) explicitly
calculates the coefficients in the representer theorem.

Proposition 32 Let f be a function in K, a reproducing kernel Krĕın space. The
orthogonal projection of the origin onto the set of interpolation functions {Tf = y}
can be written (in the notation above) as

f = T ∗
m∑

i=1

〈y, ui〉
λi

ui (4.9)

or

f =
m∑

j=1

αjk(xj , ·) where αj =
m∑

i=1

〈y, ui〉
λi

ui (4.10)

Proof Since {v1, . . . , vm} forms an orthonormal system for K, any function f ∈ K can
be written as f =

∑m
i=1 βivi + g, where g ∈ N(T ). Hence,

Tf = T

(
m∑

i=1

βivi + g

)
=

m∑
i=1

βiTvi =
m∑

i=1

βi
λi√
|λi|

ui.

We compute the coefficients βi using the relationship Tf = y, and the spectral decom-
position of y =

∑m
i=1〈y, ui〉ui. We obtain

βi =

√
|λi|
λi

〈y, ui〉.

Since f is the projection of the origin onto the interpolating set, then g = 0. Using
the above value for βi and the definition of vi, we obtain the function f as a linear
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combination of kernels.

f =
m∑

i=1

√
|λi|
λi

〈y, ui〉vi

=
m∑

i=1

〈y, ui〉
λi

T ∗ui

= T ∗
m∑

i=1

〈y, ui〉
λi

ui

=
m∑

j=1

(
m∑

i=1

〈y, ui〉
λi

ui

)
j

k(xj , ·)

Equation (4.9) shows that f = T ∗(TT ∗)−1y = T †y, and Equation (4.10) details the
form of the coefficients in the linear combination.

4.6 Summary of Learning in Krĕın spaces

The aim of this chapter is to introduce the concept of an indefinite kernel to the
machine learning community. These kernels, which induce an RKKS, exhibit many of
the properties of positive semidefinite kernels. Several examples of indefinite kernels are
given, along with their spectral properties. Due to the lack of positivity, we stabilize the
loss functional instead of minimizing it. We have proved that stabilization provides us
with a representer theorem, and also generalization error bounds via the Rademacher
average. To demonstrate the difference between learning in an RKHS and learning in
an RKKS, we showed the behaviour of the evaluation operator in terms of its spectrum.

We considered the regression problem in terms of the spline smoothing model, and
showed that it may fail under certain conditions. In the following chapters, we propose
a different approach to regularization of the linear system by using Krylov subspace
methods.
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Chapter 5

Regularization by Early Stopping

This chapter describes regularization of linear ill-posed problems by early stopping of
conjugate gradient type algorithms. These algorithms provide a different class of meth-
ods from the current machine learning toolbox of constrained optimization problems
and are introduced in Section 5.2. It can be applied to kernel methods in general, and
importantly, it applies to problems where the kernel is indefinite. First, we analyse
the regularization behaviour of the algorithm as a filter acting on the spectrum of the
kernel matrix (Section 5.3). Second we demonstrate that for the Minimal Residual al-
gorithm, the solution initially converges to the optimal and subsequently diverges when
the number of iterations increases. This is the notion of semi-convergence (Section 5.4).

5.1 What is Regularization?

Intuitively, we want to have “smooth” solutions to our optimization problem. Regu-
larization techniques aim to ensure the smoothness of the solution by augmenting the
problem we want to solve. This was formalized by Tikhonov and Arsenin [1977], where
regularization was defined in terms of solutions of ill-posed equations. Tikhonov pro-
posed that in addition to minimizing the empirical risk, a stabilizing term is included
in the minimization problem. The proposed solution has been successfully applied in
many areas, especially for solving inverse problems [Wahba, 1980, Groetsch, 1984].

A second approach relates the solution of a linear equation to the optimization of
the variational formulation [Vapnik, 1982, Chapter 2], and solving this using iterative
methods. The regularization parameter in this case is the stopping index of the iterative
method. This chapter investigates this approach to regularization in machine learning.
We focus on conjugate gradient type methods which are also known as Krylov subspace
methods. First, we define the idea of ill-posedness in the setting of kernel methods.

Let T : K → Rm be the evaluation functional where f 7→ Tf = [f(x1), . . . , f(xm)]>,
that is T maps the function f from the reproducing kernel space (RKS) K to the vector
consisting of the evaluation of this function on the input data xi ∈ X for i = 1, . . . ,m.

67
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K can be a Hilbert space or a Krĕın space, and Rm has the standard Euclidean topology.
We investigate the idea of regularization for a linear operator equation

Tf = y,

where f ∈ K and y ∈ Y = Rm.

Definition 33 (Linear Ill-Posed Problem) Let T : K → Y be a linear operator.
Then the equation

Tf = y

where f ∈ K and y ∈ Y is

• well posed if T is bijective and T † is continuous, and

• it is ill posed otherwise.

A possible approach to solve ill posed problems is to solve a series of approximate
problems which are well posed. Furthermore, as the regularization parameter is re-
duced, the approximation approaches the original problem. Such methods are called
regularization methods.

Definition 34 (Regularization Method) Let T : K → Y be an injective bounded
linear operator. Then an operator T †γ : Y → K, where γ ∈ R is the regularization
parameter, and

lim
γ→0

T †γTf = f, for all f ∈ K,

is called a regularization method for the operator T .

The problem is compounded by the fact that in many applications, we do not have the
exact labels y but a perturbed yδ for some error level δ such that

‖yδ − y‖ 6 δ.

Note that we are not interested in T †yδ, even if it exists, but we are interested in the
true value T †y, where T † is the Moore-Penrose pseudo inverse of T . Hence we are
interested in a regularization method which gives us

T †γy
δ ' T †y.

Recall from Section 4.3.1 that we can express the linear operator equation as a set
of linear equations

Kα = y.
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Observe that there are several differences between the kernel methods setting and the
solution of ill posed operator equations. First, since we are operating in reproducing
kernel spaces, we have a finite dimensional problem as a result of Proposition 24.
Second, even though we know that T is continuous (since K is a RKS), the labels yδ

may not be in the range of T . Third, the order optimal stopping rules (for example
Morozov’s discrepancy principle [Morozov, 1984]) do not apply since we do not know
the noise level δ beforehand.

The idea behind regularization by early stopping is to find an approximation to the
solution in a small subspace S of the possible solution space. That is, we are solving
the following optimization problem,

minimize
α∈Rm

‖Kα− y‖2

subject to α ∈ S.
(5.1)

We are looking for the least squares interpolation of the given data from a subspace
of the possible solution space. Observe that the regularization operator defined by this
subspace approach is a projection operator, that is T †γ = πS where, πS is a projection
onto the subspace S. We describe several different ways of choosing the subspace S.
The aim is to choose S such that

πST
†yδ ' T †y.

If we use the eigenvectors of K as the basis for our solution space, filtering the spectrum
of K appropriately will select the subspace which is most useful for the problem. For
more information on regularization methods, the reader is directed to surveys such as
Girosi et al. [1995], Chen and Haykin [2002] and Engl and Kügler [2003].

5.2 Krylov Subspace Algorithms

The Conjugate Gradient method [Hestenes and Stiefel, 1952] is an effective method for
solving linear symmetric positive definite systems. It is an iterative method that com-
putes vector sequences of iterates (that is, successive approximations to the solution).
The class of algorithms where the iterates are computed from the conjugated gradients
are called conjugate gradient type algorithms. The sequence of iterates span a Krylov
subspace, and hence such algorithms are also called Krylov subspace algorithms. A
very readable tutorial, which motivates conjugate gradient algorithms from first prin-
ciples, is Shewchuk [1994] and a historical survey of Krylov subspace methods can be
found in van der Vorst [2000].

There are two major components to a linear conjugate gradient type algorithm:
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• The computation of an optimum step size that minimizes the cost along a given
direction, and

• the construction of an orthogonal basis for the solution space, the Krylov sub-
space.

It is known that these methods are equivalent to Lanczos methods [Lanczos, 1950,
1952], in the sense that they both find a solution in a sequence of Krylov subspaces.
For an example of a derivation of the equivalence, see Golub and van Loan [1996]. The
difference lies in the method used to construct the orthogonal basis. There have been
numerous generalizations of the original algorithm, from which we choose several which
are designed for linear symmetric indefinite problems. For more background on iterative
methods in general, the reader is referred to books such as Axelsson [1994], Greenbaum
[1997], Saad [2000] and Weiss [1996], and surveys such as Hanke and Hansen [1993],
Engl and Kügler [2003] and Engl [2003]. There were recent advances in alternative
iterative approaches, that do not use Krylov subspace iterations, for solving linear
systems, including Calvetti and Reichel [2003, 2002], Calvetti et al. [1998], Hanke and
Groetsch [1998] and Frankenberger and Hanke [2000]. We shall not discuss them here.

5.2.1 Iteration and Residual Polynomials

We analyse Krylov subspace methods that solve a linear system of equations

Ax = b,

where A ∈ Rm×m a square symmetric matrix, and x, b ∈ Rm. Observe that A can be an
indefinite matrix. At iteration k, a Krylov subspace method finds a solution xk which
is an approximation of the true solution x from the Krylov space x0 + Sk(b−Ax0;A),
where x0 is some initial guess of the solution and the kth Krylov subspace is defined
as

Sk(z;G) = span{z,Gz,G2z, . . . , Gk−1z}.

The iterates xk of a Krylov subspace method can be expressed in terms of the
iteration polynomial. Let Πk be the space of polynomials of degree k where Π−1 = {0},
and Π0

k the set of normalized polynomials of degree k that is Π0
k = {p ∈ Πk|p(0) = 1}.

The coefficients of a polynomial qk−1 ∈ Πk−1 can be found such that the iterate at step
k is given by

xk = x0 + qk−1(A)(b−Ax0).

The residual at iteration k, is defined to be rk := b − Axk, and can be expressed in
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terms of another polynomial pk ∈ Π0
k as

rk = pk(A)(b−Ax0).

The iteration polynomials qk−1 and the residual polynomials pk are related by

pk(A) = I−Aqk−1(A). (5.2)

Since A can be decomposed into its eigenvalues λi and eigenvectors ui such that, Aui =
λiui for i = 1, . . . ,m, any polynomial on the operator A can be seen as affecting each
eigenvalue individually. The polynomials defined above can be equivalently expressed
in terms of the eigenvalues of A. This equivalence will be useful for proving bounds for
conjugate gradient type methods, and is derived in Appendix C.1.

Krylov subspace methods are efficient because of a cheap recursion for the compu-
tation of a new iterate xk+1 given the previous iterates x0, . . . , xk. There are numbers
αk 6= 0, and βk > 0 such that for k > 1, the residual polynomials satisfy the recursion

p0 = 1; p1 = 1− α0λ; pk+1 = −αkλpk + pk − αk
βk

αk−1
(pk−1 − pk). (5.3)

The associated iteration polynomials satisfy the recursion

q−1 = 0; q0 = α0; qk = qk−1 + αk

(
pk +

βk

αk−1
(qk−1 − qk−2)

)
. (5.4)

Hence the algorithm computes a new iterate xk+1 using only the two previous iterates
xk and xk−1. This computation can be computed as one three term recursion (which
gives rise to the Lanczos approach), or as a pair of two term recursions (which gives
rise to the conjugate gradient approach).

5.2.2 Details of Conjugate Gradient Methods

The various approaches to Krylov subspace algorithms differ in which linear system
they solve, the cost function that is being optimized, the matrix used to define con-
jugacy and the method used to generate the subsequent search directions. Table 5.1
summarizes the methods used and Figure 5.1 and 5.2 shows the implementation used
in the experiments later in this thesis, which were based on Hanke [1995a].

Although the literature recommends using preconditioning [Benzi, 2002] with con-
jugate gradient methods, we did not use any preconditioning on our problems, as we
wanted to analyse the regularization properties of the algorithm itself.

We show below that CG (Figure 5.1) generates residual polynomials and iteration
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Definition CG MR CGNE MR-II
System Ax = b Ax = b A2x = Ab Ax = b

Cost, J(x) 1
2x

>Ax− b>x 1
2‖Ax− b‖2 1

2x
>A2x− b>Ax 1

2‖Ax− b‖2
Orthogonality d>i Adj = 0 d>i A

2dj = 0 d>i A
2dj = 0 d>i A

2dj = 0
r>i rj = 0 r>i Arj = 0 r>i A

2rj = 0
New Direction, dk rk + βkdk−1 rk + βkdk−1 Ark + βkdk−1

Table 5.1: Summary of definitions used in Krylov Subspace Methods

k = 0; d0 = r0 = b−Ax0;
while (not stop) do

αk = r>k rk

d>k Adk
;

xk+1 = xk + αkdk;
rk+1 = rk − αkAdk;

βk+1 =
r>k+1rk+1

r>k rk

dk+1 = rk+1 + βk+1dk

end while

k = 0; d0 = r0 = b−Ax0;
while (not stop) do

αk = r>k Ark

d>k A2dk
;

xk+1 = xk + αkdk;
rk+1 = rk − αkAdk;

βk+1 =
r>k+1Ark+1

r>k Ark

dk+1 = rk+1 + βk+1dk

end while

Figure 5.1: Left: Conjugate Gradient algorithm (CG), Right: Minimal Residual algorithm
(MR)

k = 0; d0 = r0 = b−Ax0;
d0 = Tr0;
while (not stop) do

αk = r>k A2rk

d>k A2dk
;

xk+1 = xk + αkdk;
rk+1 = rk − αkAdk;

βk+1 =
r>k+1A2rk+1

r>k A2rk

dk+1 = Ark+1 + βk+1dk

end while

r0 = y − Sx0; r1 = r0; x1 = x0;
v−1 = 0; v0 = Sr0; w−1 = 0; w0 = Sv0;
β = ‖w0‖; v0 = v0/β; w0 = w0/β;
k = 1;
while (not stop) do
% = 〈rk, wk−1〉; α = 〈wk−1, Swk−1〉;
xk+1 = xk + %vk−1; rk+1 = rk + %wk−1;
vk = wk−1 − αvk−1 − βvk−2;
wk = Swk−1 − αwk−1 − βwk−2;
β = ‖wk‖; vk = vk/β; wk = wk/β;
k = k + 1;

end while

Figure 5.2: Left:Conjugate Gradient on Normal Equations algorithm (CGNE), Right: Lanczos
based Minimal Residual Algorithm (MR-II)
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polynomials that have recursions as shown in Equation (5.3) and (5.4) respectively.
The derivations of the other algorithms are omitted as they are similar. The reason
we require these recursions is because we analyse the regularization properties of the
algorithm in terms of the iteration polynomials qk−1.

Proposition 35 The algorithm CG has residual polynomials and iteration polynomials
that form three term recurrences as defined in Equation (5.3) and (5.4) respectively.

Proof We show that the CG algorithm as defined in Figure 5.1 has a three term
recursion for its residual polynomials. From the definition of the iterates xk+1 =
xk + αkdk and the definition of the search direction dk+1 = rk+1 + βk+1dk, we get the
following calculation:

xk+1 = xk + αkdk

= xk−1 + αkdk + αk−1dk−1

= xk−1 + αk(rk + βkdk−1) + αk−1dk−1.

Pre-multiplying by A on both sides,

Axk+1 = Axk−1 + αkArk + αkβkAdk−1 + αk−1Adk−1.

Observe that rk − rk+1 = αkAdk, therefore

Axk+1 = Axk−1 + αkArk +
(

αkβk
αk−1

+ 1
)

(rk−1 − rk).

By definition of the residual, Axk+1 = b− rk+1, and hence

b− rk+1 = b− rk−1 + αkArk + αkβk
αk−1

(rk−1 − rk) + rk−1 − rk

rk+1 = −αkArk + rk − αkβk
αk−1

(rk−1 − rk).

Associating the residuals with the residual polynomials,

pk+1 = −αkλpk + pk − αkβk
αk−1

(pk−1 − pk).

The iteration polynomials can be found by substituting Equation (5.2).

Many results on the convergence of Krylov subspace methods determines the be-
haviour of the algorithms when the error approaches zero or when the problem is well
posed [Fischer et al., 1996, Hyvönen and Nevanlinna, 2000]. Since machine learning
problems are inherently ill-posed, we cannot expect the solution to asymptotically con-
verge to the optimal. In fact, if T is a compact operator, the inverse is unbounded.
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In the finite dimensional case, the solution initially converges to the optimal, then as
the number of iterations increases, begin to diverge away from the solution. Hence
regularization is obtained by stopping the iterative procedure early, which means that
the stopping index is the regularization parameter. Note that our work is more closely
related to analysis that determine the optimal regularization parameter, rather than
the asymptotic behaviour of Krylov subspace methods. For a survey of such methods,
see Hanke and Hansen [1993], Hansen [1998] and Kilmer and O’Leary [2001].

5.2.3 Relation to Partial Least Squares

CGNE has been shown to solve the partial least squares (PLS) problem, where the
number of dimensions in the PLS estimator is the stopping index of CGNE. This equiv-
alence between PLS, Lanczos iterations and CGNE was used in Phatak and de Hoog
[2002] to show several properties of PLS, including the fact that PLS is a shrinkage es-
timator [Hastie et al., 2001, Section 3.4.3]. Using alternative methods, de Jong [1995]
and Goutis [1996] also proved the shrinkage properties of PLS. However, the coeffi-
cients of the estimator shrinks in some directions and expands in others [Lingjærde
and Christophersen, 2000, Butler and Denham, 2000].

A second useful property of PLS is that it fits closer than principal components
regression [de Jong, 1993, Phatak and de Hoog, 2002]. This implies that for the same
level of approximation, PLS would require fewer dimensions than principal components
regression. Due to its simple algorithm and efficient implementation, PLS has been
very popular in the Chemometrics literature. Surveys of the properties of PLS include
Helland [1988, 2001].

Our results provide an alternative view to the analysis of kernel PLS which was
proposed by Rosipal and Trejo [2001] and Bennett and Embrechts [2003]. Note that the
traditional algorithm used for PLS and kernel PLS, which is called NIPALS, is different
from CGNE which we consider here. In addition, we observe similar behaviour for the
other conjugate gradient type algorithms analyzed here.

5.3 Filter Functions

In this section, we analyze the effect of a particular choice of regularization method
on the spectrum of the operator. Recall from Proposition 32 that we can express the
solution of the interpolation problem as

f = T ∗
m∑

i=1

〈y, ui〉
λi

ui.
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We control the spectrum of the operator K via a real valued function ϕ on the eigen-
values λi. We define a filter function ϕ(λi, γ) which is piecewise continuous for a
regularization parameter γ 6= 0, and converges to 1 for all λi as γ → 0. Hence the
regularized solution [Engl and Kügler, 2003, Theorem 1 and 2] is

fγ =
m∑

i=1

ϕ(λi, γ)
〈y, ui〉
λi

T ∗ui.

Using spectral mapping theorem, we can control the inverse operator T † using the filter
function since it filters the spectrum of the inverse operator. Observe that the filter
function in this case only operates on the eigenvalues of the finite dimensional matrix
K. Hence the regularization operator is defined by the filter function.

5.3.1 Truncated Spectral Factorization

Intuitively, we associate eigenvalues with large absolute values to the underlying func-
tion, and associate eigenvalues close to zero with signal noise. The Truncated Spectral
Factorization (TSF) [Engl and Kügler, 2003] method can be obtained by setting all the
eigenvalues of small magnitude to zero. This means that the solution is in the subspace

S = span{T ∗ui}, |λi| > γ,

and the filter function is given by

ϕ(λi, γ) =

{
1 |λi| > γ

0 |λi| < γ

The resulting regression algorithm when truncated spectral factorization is applied
prior to performing regression is also known as principal components regression [Hastie
et al., 2001, Section 3.4.4].

5.3.2 Tikhonov Regularization

The least squares approximation can be obtained by solving a special case of the
optimization problem in the representer theorem, that is when we perform Tikhonov
regularization of the spline interpolation problem (Section 4.3.2). This is equivalent
to solving the linear system (TT ∗ + γI)α = y. Since TT ∗ = K, for values of the
regularization parameter γ which equal a negative eigenvalue of the Gram matrix K,
(K + γI) is singular. Note that in the case where K is positive, this does not occur.
Hence, solving the Tikhonov regularization problem directly may not be successful.
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Tikhonov regularization can be seen as setting

ϕ(λi, γ) =
λi

λi + γ
.

Alternatively, we can solve the linear system posed by applying Tikhonov regular-
ization to the empirical feature map, K : Rm → Rm such that α 7→ TT ∗α = Kα. This
is equivalent to solving normal equations K>Kα = K>y with a regularization term,
and is also known as weight decay or ridge regression [Hoerl and Kennard, 1970].

min
α

1
2
‖y −Kα‖2 + γ‖Kα‖2,

where the norms are in Rm. Note that we are applying Tikhonov regularization with
the regularization operator K, which gives us the linear system (K>K + γI)α = K>y.
The matrix K>K is positive, and therefore a unique solution exists for γ > 0. The
corresponding filter function is given by

ϕ(λi, γ) =
λ2

i

λ2
i + γ

.

5.3.3 Steepest Descent

Iterative methods can be used to minimize the squared error J(f) := 1
2‖Tf−y‖

2. Since
J(f) is convex, we can perform gradient descent. Since ∇fJ(f) = T ∗Tf−T ∗y, we have
the iterative definition fk+1 = fk−γ(T ∗Tf−T ∗y), which results in Landweber-Fridman
(LF) iteration [Hanke and Hansen, 1993]. This has the filter function

ϕ(λi, γ, k) = 1− (1− γλi)k,

where k is the number of iterations. The solution subspace in this case is the polynomial

S = span{(I− γT ∗T )kT ∗y} for 1 6 k 6 m.

This comes from a class of iterative methods called stationary iterative methods, where
the coefficients of iteration do not vary. This is also known as Richardson iteration
or Picard’s iteration. The regularization behaviour of this algorithm was previously
analysed in Wahba [1987]. Examples of the four filter functions described so far are
plotted in Figure 5.3.
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Figure 5.3: Filter functions for truncated spectral regularization (TSF) (γ = 0.5), Tikhonov
Regularization (TIK) (γ = 5) Ridge Regression (RR) (γ = 5) and Landweber Iteration (LW)
(γ = 0.2, k = 7)

5.3.4 Krylov Subspace Methods

Recall from Section 5.2 that the conjugate gradient type methods finds solutions which
can be expressed in terms of the iteration polynomial qk−1. Setting α0 = 0, we can
derive the filter function associated with the algorithm as follows:

fk = T ∗αk

= T ∗qk−1(K)y
= T ∗qk−1(U>ΛU)y

=
m∑

i=1

qk−1(λi)〈y, ui〉T ∗ui

=
m∑

i=1

λiqk−1(λi)
〈y, ui〉
λi

T ∗ui.

Therefore the filter function is

ϕ(λi, k) = λiqk−1(λi).

Note that the filter functions are data dependent since the coefficients of the iteration
polynomials are dependent on y. Filter functions for Krylov subspace algorithms have
been investigated in Haber [1997, Chapter 4]. Examples of filter functions generated
by CG, MR, CGNE and MR-II on UCI datasets using the Gaussian kernel are shown
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in Figure 5.4, 5.5, 5.6 and 5.7 respectively. Examples of filter functions generated by
MR, CGNE and MR-II on UCI datasets using the Epanechnikov kernel are shown
in Figure 5.8, 5.9 and 5.10 respectively. The kernel matrices are normalized by its
norm, and hence for the positive semidefinite Gaussian kernel, the eigenvalues are in
the interval [0, 1].

Compared with Figure 5.3, the filter functions for Krylov methods are “sharper”
than the fixed filter functions. Compared with TSF, it sets more eigenvalues to 1 with
only a few iterations of conjugate gradient type algorithms. This result is in agreement
with the fact pointed out in Section 5.2.3 that PLS needs fewer dimensions that PCR.
The observations that PLS shrinks in some directions and expands in others are also
apparent from the filter functions, as there are sections above 1, which implies that the
filter expands the spectrum in the direction of the eigenvector concerned.

5.4 Semi-convergence of Minimal Residual

We analyse MR (Figure 5.1) in more detail when K is positive definite. Recall that we
would like to solve the linear equation Kα = y, but we only have the noisy right hand
side yδ. MR minimises the residual norm ‖rk‖ = ‖y − Kαk‖ among all the possible
values of α in the Krylov subspace Sk. For y ∈ R(K), the iterates of MR converge to
K†y asymptotically [Hanke, 1995a, Theorem 3.4]. However, in the presence of noise,
we cannot expect yδ to be still in the range of K. In this case, the norm of the residual
diverges [Hanke, 1995a, Theorem 3.5]. Note that this analysis holds true for general
positive semidefinite operators, not just matrices. Even in the finite case, the norm
of the error ‖αk‖ for a noisy right hand side yδ does not decrease monotonically with
the number of iterations. In fact, trying to reduce the residual norm below a certain
level causes large increases in the error [Kilmer and Stewart, 1999, Theorem 3.1]. This
phenomenon of the error initially decreasing then subsequently increasing is called
semi-convergence [Natterer, 1982]. Hence the stopping index of the conjugate gradient
algorithm is the regularization parameter. An example of a method to choose this
parameter is Morozov’s discrepancy principal that was introduced in Morozov [1984].
However, as mentioned earlier, since we do not have prior knowledge about the noise
level δ, we cannot use this approach.

The regularization properties of CGNE was studied in Nemirovskii [1986], where
the discrepancy principle was suggested as the stopping criteria, and order-optimal
bounds was established for the approximations. A variant of the problem where CG is
applied directly to AA>w = b where x = A>w was called the Minimal Error method.
The appropriate stopping rule was investigated in Hanke [1995b]. Previous work on the
regularization properties of MR is in Kilmer and Stewart [1999], and the regularization
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(a) autompg (b) boston

(c) imports (d) cpu

(e) servo

Figure 5.4: Filter functions for CG using the Gaussian kernel on the various datasets after
1, 2, 5 and 8 iterations (denoted by cg1, cg2, cg5 and cg8 respectively). The asterisks on the
horizontal axis indicates the location of the 10 principal eigenvalues of K.
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(a) autompg (b) boston

(c) imports (d) cpu

(e) servo

Figure 5.5: Filter functions for MR using the Gaussian kernel on the various datasets after
1, 2, 5 and 8 iterations (denoted by cg1, cg2, cg5 and cg8 respectively). The asterisks on the
horizontal axis indicates the location of the 10 principal eigenvalues of K.
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(a) autompg (b) boston

(c) imports (d) cpu

(e) servo

Figure 5.6: Filter functions for CGNE using the Gaussian kernel on the various datasets after
1, 2, 5 and 8 iterations (denoted by cg1, cg2, cg5 and cg8 respectively). The asterisks on the
horizontal axis indicates the location of the 10 principal eigenvalues of K2.
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(a) autompg (b) boston

(c) imports (d) cpu

(e) servo

Figure 5.7: Filter functions for MR-II using the Gaussian kernel on the various datasets after
1, 2, 5 and 8 iterations (denoted by cg1, cg2, cg5 and cg8 respectively). The asterisks on the
horizontal axis indicates the location of the 10 principal eigenvalues of K.



§5.4 Semi-convergence of Minimal Residual 83

(a) autompg (b) boston

(c) imports (d) cpu

(e) servo

Figure 5.8: Filter functions for MR using the Epanechnikov kernel on the various datasets
after 1, 2, 5 and 8 iterations (denoted by cg1, cg2, cg5 and cg8 respectively). The asterisks on
the horizontal axis indicates the location of the 10 principal eigenvalues of K.
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(a) autompg (b) boston

(c) imports (d) cpu

(e) servo

Figure 5.9: Filter functions for CGNE using the Epanechnikov kernel on the various datasets
after 1, 2, 5 and 8 iterations (denoted by cg1, cg2, cg5 and cg8 respectively). The asterisks on
the horizontal axis indicates the location of the 10 principal eigenvalues of K2.
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(a) autompg (b) boston

(c) imports (d) cpu

(e) servo

Figure 5.10: Filter functions for MR-II using the Epanechnikov kernel on the various datasets
after 1, 2, 5 and 8 iterations (denoted by cg1, cg2, cg5 and cg8 respectively). The asterisks on
the horizontal axis indicates the location of the 10 principal eigenvalues of K.
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properties of MR-II is investigated in Hanke [1995a, Chapter 6].

In view of these results, we would like to derive an expression for the expected risk.
Figure 5.11 shows a summary of the notation used in this section. We denote the iter-
ates generated by MR on the noisy problem by αδ

k. Hence for a particularK and yδ, MR
generates a sequence αδ

0, . . . , α
δ
k, . . . , α

δ
m. Associated with each iterate αδ

k is a function
defined by fk = T ∗αδ

k. We denote the underlying target function generating the data by
t, and the projection of t onto the range of T ∗ by t∗. The empirical risk Remp(f) is the
residual norm for a particular choice of α, that is Remp(fk) = ‖y −Kαk‖. The aim of
the following theorems is to qualitatively relate the empirical error Remp(fk)−Remp(t),

and the expected error R(fk)−R(t), where R(f) :=
√∫

(f(x)− y)2dP (x, y).

Figure 5.11: A guide to the notation used in Section 5.4. For a noisy problem Kα = yδ,
we denote the iterates of MR by αδ

0, . . . , α
δ
k where k is the number of iterations. A function

fk := T ∗αδ
k is associated with each iterate αδ

k. We denote the true underlying function by t

and its projection onto the range of T ∗ as t∗. Associated with the ideal function is a coefficient
vector α∗.

The analysis of conjugate gradient type algorithms is more complex than those for
the regularization methods described in Section 5.3.1, 5.3.2 and 5.3.3. This is because
the regularization operator is non-linear as it involves both K and yδ. Let αδ

k be the
iterates corresponding to the solution of the interpolation equation with noise, that is
Kαδ = yδ. As can be observed by the figures in Section 5.3.4, the filters and hence the
regularization properties are dependent on the slope of pk(λ) at the origin. Let θi,k be
the ith root of the residual polynomial pk(λ) of order k. Recall that we can express a
polynomial as a product of its roots, that is

pk(λ) =
k∏

i=1

(
1− λ

θi,k

)
and hence p′k(0) = −

k∑
i=1

1
θi,k

.

Theorem 36 provides the relationship between the empirical risk on the data and
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the best possible empirical risk. The proof follows closely that of Hanke [1995a, Lemma
3.7], where the norms of the residuals are investigated. As the proof is not well known in
the machine learning community, it is reproduced in a modified form in Appendix C.2.
The proof of Theorem 36 involves four technical lemmas about the residual polynomials
pk(λ) which are also proved in Appendix C.2.

Theorem 36 Let α∗ be the solution of the underlying problem Kα = y, and αδ
k be the

iterates of MR applied to the noisy problem Kα = yδ. If y ∈ R(K), then

Remp(fk)−Remp(t) 6
2

|p′k(0)|
‖α∗‖,

where fk = T ∗αδ
k, and t is the optimal function associated with the noiseless data y,

that is y = Tt.

Theorem 36 shows that the empirical risk is not too far from the empirical risk
achieved by the best function. Since |p′k(0)| > k, the gap narrows with the number of
iterations. The gradient of the residual at zero p′k(0) is also the quantity of interest that
determines the rate of convergence and divergence of the error. Based on previous work
by other researchers such as Hanke and Hansen [1993], Hansen [1998], we do not expect
the real error to converge. The phenomenon of semi-convergence is quantitatively
defined in Theorem 37, which is a simplified version of Corollary 3.9 in Hanke [1995a].
The bound between the expected risk of the function estimated by MR and the true
function is expressed in terms of |p′k(0)|. The theorem uses two technical lemmas
proved in Appendix C.3 that bound the distance between an iterate αδ

k and the true
coefficients α∗. Theorem 37 is proved in Appendix C.3. Observe that the bound
consists on a decreasing term and an increasing term.

Theorem 37 Let R(f) be the expected risk R(f) :=
√∫

(f(x)− y)2dP (x, y), fk be the
functions associated with the iterates of MR and t the true underlying function. Then

R(fk)−R(t) 6
a

|p′k(0)|
+ b|p′k(0)|+ c,

where a = 2‖T ∗‖‖K†‖‖α∗‖, b = ‖T ∗‖Remp(t) and c = 2‖K†‖Remp(t) + ‖α∗‖+ ‖t− t∗‖.

The bound consists on a decreasing term |p′k(0)|−1 and an increasing term |p′k(0)|.
This implies that fk initially approaches t then diverges from it. The transition point is
dependent on and the empirical risk of the underlying function Remp(t) and the values
of the constants.
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5.5 Conclusion

We analysed the idea of regularization by early stopping for conjugate gradient algo-
rithms. We used the idea of a filter function to control the spectrum of the inverse
problem, and gave some examples of the filters associated with conjugate gradient
methods applied to machine learning datasets from the UCI database. We observe
similar behaviour of the filter functions as observed in PLS estimation. We interpreted
the idea of semi-convergence of the Krylov subspace iterations of MR in terms of ma-
chine learning, and showed that early stopping is essential for proper regularization. In
the next chapter, we shall show some empirical evidence that regularization by early
stopping can be used for machine learning.



Chapter 6

Applications of Indefinite Kernels

In this chapter, we derive optimization problems associated with indefinite kernels
for principal component analysis (PCA), partial least squares (PLS) regression and
Fisher discriminant analysis. In the case of PCA, the optimization can be written
as a standard eigenvalue problem. The regression and classification problems can be
expressed as a system of linear equations. We solve the resulting optimization problems
using conjugate gradient type methods (MR, CGNE, and MR-II).

Building on the theoretical framework in Chapter 4, we provide a more practical
viewpoint on the matter of learning with indefinite kernels. The aims of this chapter
are:

• To perform principal component analysis with indefinite kernels and prove recon-
struction error bounds (Section 6.1).

• To show that optimization can be efficiently achieved by using conjugate gradient
methods, as theoretically analysed in Chapter 5. This provides another avenue for
solving optimization problems associated with kernel methods (including positive
semidefinite ones).

• To provide empirical evidence for the efficacy of conjugate gradient type meth-
ods with early stopping for solving machine learning problems such as partial
least squares regression (Section 6.2) and kernel Fisher discriminant for binary
classification (Section 6.3).

We will use the algorithms in Section 5.2 with early stopping for solving regression
and binary classification problems in Section 6.2 and 6.3 respectively. First we inves-
tigate principal component analysis, which has a simple generalization in the case of
the indefinite kernel.

89
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6.1 Principal Component Analysis

Principal component analysis (PCA) is a well known technique for dimensionality re-
duction. The kernel version [Schölkopf et al., 1999] performs PCA in the feature space
induced by the kernel. PCA forms a lower dimensional approximation from the eigen-
vectors of the operator. For positive semidefinite operators, PCA chooses the largest
eigenvectors corresponding to the largest eigenvalues. We show below that the prin-
cipal components when the kernel is indefinite are the eigenvalues with the largest
magnitude. This is motivated by the fact that we want the corresponding largest
eigenvalues in the associated Hilbert space K (Definition 18). The main idea is to use
the decomposition of a Krĕın space to two orthogonal Hilbert spaces.

In the following, we denote by lowercase the kernel function k(x, x′) and by upper-
case the kernel operator K, defined by

(Kf)(x) =
∫
f(y)k(x, y)dP (y).

Recall that a Krĕın space can be decomposed into two orthogonal Hilbert spaces, that
is K = H+ 	 H− (Definition 17) and there is an associated majorizing Hilbert space
K = H+ ⊕ H−. Let H+ and H− have reproducing kernels k+ and k−, then the
reproducing kernel of K is k = k+−k− and the reproducing kernel of K is k = k+ +k−.
We use the fundamental decomposition in the following derivations. Furthermore, we
choose H+ to contain the span of the eigenvectors of K corresponding to eigenvalues
0.

We want the lower dimensional approximation to be close to the original function.
Therefore we define the principal components to be the eigenvectors with associated
eigenvalues of largest magnitude. Using the fundamental decomposition, we apply the
results of Theorem 6 and 7 of Zwald et al. [2004] to each one of the Hilbert spaces,
and obtain bounds on the error of reconstruction. We show the global result below,
and omit the localised result. We define K2 to be the integral operator associated with
kernel k(xi, xj)2. Following Zwald et al. [2004, Assumption 1], we assume that there
exists M > 0 such that k(X,X) 6 M almost surely.

Let Πd be the set of all projections of dimension d, and π ∈ Πd. Define the
expected and empirical reconstruction error as R(π) = EX‖k(X, ·) − πk(X, ·)‖2K and
Rm(π) = 1

m

∑m
i=1 ‖k(Xi, ·) − πk(Xi, ·)‖2K respectively. Denote by π∗d = argminπR(π)

and π̂d = argminπRm(π). Theorem 38 shows that with high probability, when we
choose the low dimensional approximation by using the eigenvectors corresponding to
the eigenvalues with largest magnitude, the reconstruction error is small.
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Theorem 38 With probability at least 1− 6e−ξ,

R(π∗d)−R(π̂d) 6 4

√
d

m
tr(K2) + 12M

√
2ξ
m
.

Proof Since we have a fundamental decomposition, the spaces H+ and H− are or-
thogonal. Furthermore, each one is positive semidefinite, and hence have positive
eigenvalues only. Let ui be the eigenvectors of K with associated eigenvalues λi,
that is Kui = λiui, and let the λi be sorted in non-increasing order of magnitude
|λ1(A)| > |λ2(A)| > . . .. This implies that K+ = span{ui such that λi > 0} and
K− = span{ui such that λi < 0}.

Define Λd = {λ1, λ2, . . . , λd} the first d eigenvalues, Λ+ = {λi ∈ Λd such that λi >

0}, and Λ− = {λi ∈ Λd such that λi < 0}. Denote the cardinality of the set by,
d+ = |Λ+| and d− = |Λ−|, and observe that d = d+ + d−.

For H+ we can apply Zwald et al. [2004, Theorem 6], and obtain that with proba-
bility at least 1− 3e−ξ,

R(π∗d+
)−R(π̂d+) 6 4

√
d+

m
tr(K2

+) + 6M

√
2ξ
m
.

The same bound applied for the negative part. By the union bound, the probability of
the total reconstruction error being large is bounded by the sum of the probabilities that
the reconstruction error is large in both H+ and H−. Since tr(K2

+)+ tr(K2
−) 6 tr(K2)

the result follows.

In the following toy example, data was generated using the cosine function in the
interval [−1, 1], with some Gaussian noise added to it. The kernel matrix was then
centered and the eigenvectors corresponding to the largest absolute valued eigenvalues
were computed. This was done using the MATLAB command

eigs(K,p,’LM’);

where K is the kernel matrix, p is the number of output dimensions, and the switch
‘LM’ selects the eigenvectors corresponding to the eigenvalues with largest magnitude.
The results are shown in Figure 6.1. The two kernels used were the Gaussian kernel

k(xi, xj) = exp
(
−‖xi − xj‖2

σ

)
,

and the Epanechnikov kernel

k(xi, xj) =
(

1− ‖xi − xj‖2

σ

)2

, for
‖xi − xj‖2

σ
6 1.
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Figure 6.1: Two dimensional toy example. The figures contain lines of constant principal
component value (contour lines). We did not draw the eigenvectors as they belong to an
infinite dimensional feature space. The first row shows the results using the Gaussian kernel
with σ = 0.1. The second row shows the results using the Epanechnikov kernel with σ = 0.1.

6.2 Partial Least Squares Regression

We apply the algorithms analysed in Chapter 5, specifically MR, CGNE and MR-II as
shown in Figures 5.1 and 5.2. To find an approximation to the interpolation problem
such that the solution is in a small subspace of the possible solution space, we choose the
subspace to be the Krylov subspace generated by the corresponding conjugate gradient
algorithm. This means that we are performing regularization by early stopping of the
conjugate gradient algorithm.

Although the problem of regression can be cast as a general eigenvalue prob-
lem [Borga et al., 1997], we take the direct approach by using the observation that
solving the linear system Kα = y using CGNE with early stopping is equivalent to the
partial least squares method, which was discussed in Section 5.2.3. We also apply MR
and MR-II, hence investigating PLS for different Krylov subspaces.

We used datasets from the UCI Machine Learning repository [Blake and Merz, 1998]
for our experiments. The ε-SVR algorithm is taken from SVLAB, with ε = 0.1 and
C = {102, 103, 104, 105, 106}. The datasets were split as in Meyer et al. [2003], where 10
permutations of 10 fold cross validation were created. The input data was preprocessed
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to zero mean unit standard deviation. The kernel in the following experiments was the
Gaussian kernel and the squared Euclidean distance k(x, x′) = 1

σ‖x − x′‖2, the width
was chosen between the 10% and 90% quantile of the squared distance between the
input vectors. Observe that the squared Euclidean distance forms a kernel matrix that
is not positive semidefinite.

The number of iterations for the iterative methods was tuned using 10 fold cross
validation of the training data by computing the cost function on the validation data
set. The number of iterations tested was up to 10% of the number of samples in the
training data, even though it seems that most of the conjugate gradient type algorithms
converge within 20 iterations. We did not explore the effect of different ways of choosing
the stopping index. For expositions about the choice of regularization parameters for
Krylov subspace methods see Kilmer and O’Leary [2001].

The results (as shown in Table 6.1 and 6.2) indicate that the conjugate gradient type
algorithms do not perform as well as ε-SVR or GPR in most of the datasets. However
the decrease in performance is within the interquartile range of the best performer.
However, the iterative methods are much faster in terms of computations time. In
fact, in many instances the computation time is better than using the Matlab matrix
inversion with the linear kernel. It is to be noted that the Krylov methods were
implemented in Matlab, and performed competitively with the Matlab native code for
inversion of a matrix. These gains were due to the fact that only very few iterations
were required before the solution was found.

Data Linear GPR ε-SVR CGNE MR-II CGNE* MR-II*

autompg 10.7±4.5 6.5±2.7 6.3±3.0 7.2±3.2 7.2±3.2 8.2±3.8 8.1±3.8
boston 21.7±10.7 9.1±4.8 8.4±7.5 13.9±11.1 12.7±8.6 17.4±11.3 16.3±11.6
imports (106) 5.5±4.7 4.2±5.0 3.5±5.4 8.0±12.2 8.7±11.8 4.4±2.9 4.6±2.9
cpu (103) 3.3±3.6 1.5±2.4 1.9±2.3 2.8±5.6 2.1±4.5 2.9±5.6 2.5±5.7
servo 1.1±0.4 1.3±0.6 0.2±0.4 0.6±0.9 0.6±0.8 0.9±0.5 0.9±0.5

Table 6.1: Regression: mean squared test set errors (median and inter quartile range). The
algorithm labelled Linear is found by solving α = (X>X+λI)−1y. The algorithm labelled GPR
is found by solving α = (K+λI)−1y with K generated by the Gaussian kernel. The algorithms
labelled CGNE and MR-II were run using the Gaussian kernel. The same algorithms run using
Euclidean distance are labelled CGNE* and MR-II*.

By comparing the performance of the Gaussian and the Euclidean distance on the
Krylov methods we see that in terms of accuracy, the Gaussian kernel performs better
in most cases except for the “imports” dataset. However, the Euclidean distance tends
to induce Gram matrices which result in faster convergence.

In summary, the application of Krylov subspace methods to regression gives signif-
icant speedup compared to the ε-SVR. However, it was observed that the decrease in
computation time increases the error rate by a small amount. This increase in error
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Data (items) Linear GPR ε-SVR CGNE MR-II CGNE* MR-II*

autompg (398) 39 53 553 67(24.6) 57(16.9) 66(19.4) 34(14.9)
boston (506) 72 97 983 139(34.2) 101(26.9) 153(31.4) 82(24.8)
imports (205) 4 7 83 5(8.4) 7(7.8) 4(10.1) 4(9.8)
cpu (209) 8 11 148 11(13.2) 10(12.6) 5(4.5) 6(5.2)
servo (167) 6 9 98 6(6.9) 7(6.4) 4(10.1) 4(10.0)

Table 6.2: Regression: mean time for optimization (the mean number of iterations taken by
the Krylov subspace algorithms in brackets) The algorithm labelled Linear is found by solving
α = (X>X + λI)−1y. The algorithm labelled GPR is found by solving α = (K + λI)−1y with
K generated by the Gaussian kernel. The algorithms labelled CGNE and MR-II were run using
the Gaussian kernel. The same algorithms run using Euclidean distance are labelled CGNE*
and MR-II*.

was within the interquartile range of the best error.

6.3 Fisher Discriminant

Fisher discriminant analysis (for example [Duda et al., 2000, Section 3.8.2]) is a method
for classification. We focus of the binary classification case in this section. The
Fisher discriminant maximises a coefficient which is a ratio of between class variances
and within class variances. For some domain X , we are given some training data
(Xtrain, Ytrain) = (xi, yi) for i = 1, . . . ,m, where x ∈ X and y ∈ {−1,+1}. The kernel
Fisher discriminant [Mika et al., 1999] allows us to perform the Fisher discriminant
algorithm in feature space. We can derive a similar expression for indefinite kernels.
Let Φ : X → K. By the representer theorem, we can express the solution as

w =
m∑

i=1

αiΦ(xi).

We define the sample mean for each class in K to be

µ± =
1
m±

∑
x∈X±

Φ(xi) =
1
m±

K1±,

where K is the gram matrix defined by Kij = k(xi, xj) and 1+ and 1− is a vector with
ones in the class +1 and −1 respectively and zero elsewhere. We want to maximize the
separability of the class centers (the between class variance) and minimize the within
class variance. The Fisher discriminant measures this by defining

SB = (µ+ − µ−)(µ+ − µ−)>,
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and
SW =

∑
x∈Xpm

(Φ(x)− µ±)(Φ(x)− µ±)>

and maximizing the Rayleigh coefficient [Parlett, 1980]. After some algebraic manip-
ulation (for example see Mika et al. [1999]), the Fisher discriminant can be found by
maximizing

J(α) =
α>Mα

α>Nα
,

where
N = KK> −m+µ+µ

>
+ −m−µ−µ

>
−

and
M = (µ+ − µ−)(µ+ − µ−)>.

The maximum of Rayleigh coefficient is equivalent to solving the eigenvalue problem
N−1Mα = λα. Since (µ+−µ−)>α is a scalar, Mα is a vector in the direction µ+−µ−.
Since we are interested in the direction of α, we can find the best solution by solving
the linear system

Nα = µ+ − µ−.

Note that we are performing regression on the vector formed by the centers determined
by the labels. Therefore, we can use the Krylov subspace techniques of Section 5.2.

We used datasets from the UCI Machine Learning repository for our experiments.
The C-SVM results used the implementation in SVLAB, with C = {102, . . . , 109}. The
datasets were split as in Meyer et al. [2003], which is 10 permutations of 10 fold cross
validation. The input data was preprocessed to zero mean unit standard deviation. The
kernel in the following experiments was the Gaussian kernel and the squared Euclidean
distance k(x, x′) = 1

σ‖x − x′‖2. The width was chosen between the 25% quartile and
the maximum of the squared distance between the input vectors. The early stopping
parameter was chosen as in Section 6.2. The results are presented below, with Table 6.3
showing the median and interquartile range of the error rate, and Table 6.4 showing
the time taken for training the classifier.

The performance gains in terms of computation time demonstrated in the regres-
sion case in the previous section is again apparent for the kernel Fisher discriminant.
However, in some of the cases, the magnitude of the speedup is smaller. Interestingly,
in several of the datasets tested, the Krylov subspace methods were more accurate
than the C-SVM, but still within the inter quartile range. For binary classification,
the Euclidean distance had the highest accuracy for the “heart” and “credit” datasets.
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Data C-SVM MR CGNE MR-II MR* CGNE* MR-II*

pima 24.4±3.4 30.0±3.4 26.7±2.9 26.4±3.1 27.4±2.6 26.4±2.9 26.4±2.8
ionosphere 5.7±2.1 35.7±11.4 7.9±3.6 7.1±2.9 25.7±3.6 7.9±2.9 8.6±2.9
wdbc 3.9±3.5 9.2±2.2 3.5±1.3 3.9±0.9 10.5±2.6 4.8±1.8 5.3±2.0
heart 17.6±5.0 18.5±5.0 18.5±4.2 17.6±4.2 18.5±4.2 16.8±3.8 17.6±3.4
thyroid 5.8±5.8 12.8±9.9 5.8±3.5 5.8±2.3 10.5±3.5 9.3±4.7 9.3±4.7
sonar 15.7±7.2 15.7±4.8 13.3±4.8 12.0±4.8 39.8±7.2 24.1±6.0 24.1±6.0
credit 14.4±2.3 15.7±2.7 13.8±2.3 13.8±2.3 21.1±2.9 13.4±2.7 13.8±2.7
glass 8.1±4.7 8.7±3.5 8.1±3.5 8.1±3.5 9.3±4.7 8.1±3.5 8.1±3.5

Table 6.3: Binary Classification: test set errors (median and inter quartile range). The
algorithms labelled MR, CGNE and MR-II were run using the Gaussian kernel. The same
algorithms run using Euclidean distance are labelled MR*, CGNE* and MR-II*.

Data (items) C-SVM MR CGNE MR-II MR* CGNE* MR-II*

pima (768) 726 546(7.3) 522(34.7) 390(34.7) 372(10.9) 332(12.8) 269(10.6)
ionosphere (351) 133 68(4.6) 63(19.9) 36(17.7) 35(4.9) 41(17.1) 34(14.9)
wdbc (569) 392 232(3.8) 190(26.6) 142(25.3) 126(4.1) 167(24.4) 133(27.1)
heart (303) 87 48(8.4) 22(7.9) 21(6.8) 23(4.7) 24(10.1) 19(7.8)
thyroid (215) 51 17(2.1) 9(8.0) 11(8.4) 10(2.6) 9(4.0) 8(5.1)
sonar (208) 39 19(8.3) 9(9.4) 10(8.8) 9(3.6) 11(9.7) 8(9.7)
credit (690) 512 398(14.3) 189(20.8) 185(23.3) 183(6.1) 217(20.1) 157(13.4)
glass (214) 51 18(3.4) 10(8.3) 10(9.2) 9(3.5) 12(6.2) 8(6.3)

Table 6.4: Binary Classification: mean time for optimization. For each algorithm, the training
time (in miliseconds), was measured using the Matlab command cputime. The mean number
of iterations taken by the Krylov subspace algorithms is shown in brackets. The algorithms
labelled MR, CGNE and MR-II were run using the Gaussian kernel. The same algorithms run
using Euclidean distance are labelled MR*, CGNE* and MR-II*.
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6.4 Conclusion

We have shown that several machine learning problems can be solved when using
indefinite kernels. Specifically, we have observed that the corresponding KPCA problem
can be solved by choosing the principal eigenvectors to be the ones with the eigenvalues
of largest magnitude. We have demonstrated that we can solve partial least squares
regression and kernel Fisher discriminant when the kernel is indefinite. The resulting
optimization problem was solved using Krylov subspace methods.

Using Krylov subspace methods we have given some empirical evidence that par-
tial least squares regression and kernel Fisher discriminant performs comparably with
traditional methods in terms of accuracy. In addition, Krylov subspace methods are
much faster than the interior point methods used in SVMs. In fact, these gains are
also true for the positive semidefinite case. Hence we can widen the types of kernels
we use and still optimize the resulting machine learning problems efficiently.
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Chapter 7

Conclusion

“Go on, get out - last words are for fools who haven’t said enough.”

Karl Marx to his housekeeper, who urged him to tell her his last words so she could
write them down for posterity, 1883.

This thesis provides a framework for learning the best kernel between objects, a
generalization of positive semidefinite kernels and a different approach to regulariza-
tion. For each extension, we presented some motivating examples, reviewed the rele-
vant results from functional analysis, derived corresponding optimization problems for
machine learning and provided experimental results.

In the problem of learning the kernel, the proposed solution is a kernel on the
space of kernels itself, called the hyperkernel. This allows us to perform regularization
by controlling the norm of the kernel in the Hyper-RKHS. The semidefinite programs
corresponding to several machine learning problems were derived. In the experiments
with data from the UCI repository, the same parameter settings were used for binary
classification, regression and novelty detection. This increased automation still led to
results competitive with the state of the art.

The representer theorem for the Hyper-RKHS tells us that the optimum kernel is
a linear combination of hyperkernels. However, without further restriction, this may
lead to indefinite kernels. Several other motivations for indefinite kernels were also
presented, and the functional framework of the RKKS was detailed. We demonstrated
that indefinite kernels still gives rise to the representer theorem and generalization error
bounds. Since the standard Tikhonov regularization may not be successful in this case,
we chose to perform regularization by early stopping. The theoretical properties of this
were analyzed via the idea of a filter function on the spectrum of the kernel and an
analysis of the rate of convergence of the Minimal Residual algorithm. The idea of
semi-convergence is not limited to Krylov subspace algorithms, but can be applied to
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many iterative algorithms.
The theoretical analysis of Krylov subspace algorithms motivated us to use them for

machine learning applications. Although well studied in other fields, Krylov subspace
algorithms have not been applied to machine learning yet. Coupled with regularization
by early stopping, these algorithms provide a novel way for optimization in machine
learning.

In conclusion, the results presented here broaden our understanding of machine
learning with kernels: how we regularize them and how we optimize the resulting
problem. First, it shows that learning the kernel can be treated in the same framework.
Second, it shows that indefinite kernels can be successfully used in machine learning.
Third, it proposes regularization by early stopping as an alternative paradigm for
machine learning.



Appendix A

Derivations and Proofs for

Hyperkernels

A.1 Proof of Proposition 14

We will make use of a theorem due to Albert [1969] which is a generalization of the
Schur complement lemma for positive semidefinite matrices.

Theorem 39 (Generalized Schur Complement) Let X =

[
A B

B> C

]
, where A

and C are symmetric. Then

X � 0 if and only if A � 0, AA†B = B and C −B>A†B � 0 (A.1)

where A† is the Moore-Penrose inverse of A.

We prove the proposition that the solution of the quadratic minimax problem (3.4)
is obtained by minimizing the SDP (3.5).

Proof Rewrite the terms of the objective function in (3.4) dependent on x in terms
of their Wolfe dual. The corresponding Lagrange function is

L(x, ξ, γ) = −1
2
x>H(ξ)x− c(ξ)>x+ γ>(Ax+ a), (A.2)

where γ ∈ RM is a vector of Lagrange multipliers with γ > 0. By differentiating
L(x, ξ, γ) with respect to x and setting the result to zero, one obtains that (A.2) is
maximized with respect to x for x = H(ξ)†(A>γ − c(ξ)) and subsequently we obtain
the dual

D(ξ, γ) =
1
2
(A>γ − c(ξ))>H(ξ)†(A>γ − c(ξ)) + γ>a. (A.3)

Note that H(ξ)†H(ξ)H(ξ)† = H(ξ)†. For equality constraints in (3.4), such as Bx+b =
0, we get correspondingly free dual variables.
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The dual optimization problem is given by inserting (A.3) into (3.4)

min
ξ,γ

1
2(A>γ − c(ξ))>H(ξ)†(A>γ − c(ξ)) + γ>a+ d(ξ)

subject to H(ξ) � 0, G(ξ) � 0, γ > 0.
(A.4)

Introducing an auxiliary variable, t, which serves as an upper bound on the quadratic
objective term gives an objective function linear in t and γ. Then (A.4) can be written
as

min
ξ,γ

1
2 t+ γ>a+ d(ξ)

subject to t � (A>γ − c(ξ))>H(ξ)†(A>γ − c(ξ)),
H(ξ) � 0, G(ξ) � 0, γ > 0.

(A.5)

From the properties of the Moore-Penrose inverse, we get H(ξ)H(ξ)†(A>γ − c(ξ)) =
(A>γ − c(ξ)). Since H(ξ) � 0, by Theorem 39, the quadratic constraint in (A.5) is
equivalent to [

H(ξ) (A>γ − c(ξ))
(A>γ − c(ξ))> t

]
� 0 (A.6)

Stacking all the constraints in (A.5) as one linear matrix inequality proves the claim.

A.2 Derivation of Hyperkernel Optimization

This section gives the definitions of SVM optimization problems taken from Schölkopf
and Smola [2002], and derive the corresponding hyperkernel optimizations based on
the dual of the SVM problem.

In each of the derivations, we replace the empirical quality functional Qemp(k,X, Y )
with the appropriate dual form of the regularized risk functional, in the equation

min
k∈H

Qemp(k,X, Y ) +
λQ

2
‖k‖2H (A.7)

In this subsection, we use the same notation as defined in Section 3.1.2, which is
reproduced here for reading convenience. For p, q, r ∈ Rn, n ∈ N let r = p◦q be defined
as element by element multiplication, ri = pi × qi. The pseudo-inverse (or Moore-
Penrose inverse) of a matrix K is denoted K†. Let ~K be the m2 by 1 vector formed
by concatenating the columns of an m by m matrix. We define the hyperkernel Gram
matrix K by putting together m2 of these vectors, that is we set K = [ ~Kpq]mp,q=1. Other
notations include: the kernel matrix K = reshape(Kβ) (reshaping a m2 by 1 vector,
Kβ, to a m by m matrix), Y =diag(y) (a matrix with y on the diagonal and zero
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everywhere else), G(β) = Y KY (the dependence on β is made explicit), I the identity
matrix, 1 a vector of ones and 1m×m a matrix of ones. Let w be the weight vector and
boffset the bias term in feature space, that is the hypothesis function in feature space
is defined as g(x) = w>φ(x) + boffset where φ(·) is the feature mapping defined by the
kernel function k.

The number of training examples is assumed to be m, that is Xtrain = {x1, . . . , xm}
and Ytrain = y = {y1, . . . , ym}. Where appropriate, γ and χ are Lagrange multipliers,
while η and ξ are vectors of Lagrange multipliers from the derivation of the Wolfe dual
for the SDP, β are the hyperkernel coefficients, t1 and t2 are the auxiliary variables.
When η ∈ Rm, we define η > 0 to mean that each ηi > 0 for i = 1, . . . ,m.

A.2.1 L1 SVM (C-parameterization)

Recall the primal problem for the C-SVM,

min
w,ξ

1
2
‖w‖2 +

C

m

m∑
i=1

ξi

subject to yi(〈xi, w〉+ b) > 1− ξi

ξi > 0 for all i = 1, . . . ,m

and its dual form,

max
α∈Rm

m∑
i=1

αi −
1
2

m∑
i=1

αiαjyiyjk(xi, xj)

subject to
∑m

i=1 αiyi = 0

0 6 αi 6 C
m for all i = 1, . . . ,m.

Using the C style parameterization and setting the cost function to the L1 soft margin
loss, that is c(xi, yi, f(xi)) = max(0, 1− yif(xi)) we get the following equation.

min
f∈H,k∈H

C
m

∑m
i=1 ξi + 1

2‖f‖
2
H + λQ

2 ‖k‖
2
H

subject to yif(xi) > 1− ξi

ξi > 0

By considering the optimization problem dependent on f , we can use the derivation
of the dual problem in the standard C-SVM. The following equation expresses this
in matrix notation and also replaces ‖k‖2H = β>Kβ which is possible due to the
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representer theorem for hyperkernels.

min
β

max
α

1>α− 1
2α

>G(β)α+ λQ

2 β
>Kβ

subject to α>y = 0
0 6 αi 6 C

m for all i = 1, . . . ,m
βi > 0

(A.8)

This is the quadratic form of Corollary 15 where x = α, θ = β, H(θ) = G(β),

c(θ) = −1, Σ = CλQK, the constraints are A =
[
y −y I −I

]>
and a =[

0 0 0 C
m1

]>
. Applying Corollary 15, we obtain the corresponding SDP. To

demonstrate how each constraint leads to the Lagrange multipliers, we replace the ma-
trix constraint with three linear constraints and derive the corresponding semidefinite
program for the above optimization problem. We rewrite the terms of A.8 dependent
on α in terms of their Wolfe dual. The corresponding Lagrange function is given by
the following equation.

L(α, γ, η, ξ) = 1>α− 1
2
α>G(β)α+ η>α− ξ>(α− C

m
) + γy>α (A.9)

where the Lagrange multipliers are γ free, η > 0 and ξ > 0. Then, differentiating
L(α, γ, η, ξ) with respect to α gives us:

∂L(α, γ, η, ξ)
∂α

= 1−G(β)α+ η − ξ + γy

Setting this to zero shows that A.9 is minimized with respect to α for α = G(β)−1(γy+
1 + η − ξ). For the case when G(β) is positive semidefinite, we can replace the inverse
with the Moore-Penrose generalized inverse, and the following results still follow. For
notational convenience, let z = γy + 1 + η − ξ.

D(γ, η, ξ) =
1
2
z>G(β)−1z + ξ>

C

m

The dual optimization problem is given by inserting the previous equation into A.8.

min
β,γ,η,ξ

1
2z

>G(β)−1z + ξ> C
m + λQ

2 β
>Kβ

subject to η > 0, ξ > 0, β > 0
(A.10)
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Introducing auxilliary variables t1 and t2 to bound the quadratic terms in z and β

respectively, we get the following optimization problem.

min
β,γ,η,ξ

1
2 t1 + ξ> C

m + λQ

2 t2

subject to η > 0, ξ > 0, β > 0
t2 > β>Kβ

t1 − z>G(β)−1z � 0

(A.11)

Using the Schur Complement Lemma and expressing the quadratic constraint as a
second order cone constraint, we get the following semidefinite program.

min
β,γ,η,ξ

1
2 t1 + ξ> C

m + λQ

2 t2

subject to η > 0, ξ > 0, β > 0
‖K

1
2β‖2 6 t2[
G(β) z

z> t1

]
� 0.

(A.12)

We replace ‖K
1
2β‖2 6 t2 by ‖K

1
2β‖ 6 t2, and add the scale breaking constraint

1>β = 1, we get
min

β,γ,η,ξ

1
2 t1 + C

mξ
>1 + λQ

2 t2

subject to η > 0, ξ > 0, β > 0
‖K

1
2β‖ 6 t2,1>β = 1[
G(β) z

z> t1

]
� 0.

The classification function is given by f = KG(β)−1(z ◦ y)− γ.

A.2.2 L1 SVM (ν-parameterization)

Recall the primal problem for the ν-SVM,

min
w,ξ,ρ,b

1
2
‖w‖2 − νρ+

1
m

m∑
i=1

ξi

subject to yi(〈xi, w〉+ b) > ρ− ξi

ξi > 0 for all i = 1, . . . ,m

ρ > 0
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and its dual form

min
α∈Rm

1
2

m∑
i=1

αiαjyiyjk(xi, xj)

subject to
∑m

i=1 αiyi = 0∑m
i=1 αi > ν

0 6 αi 6 1
m for all i = 1, . . . ,m.

We derive the regularized quality functional and the SDP that can be used to solve it.
Setting the cost function to the L1 soft margin loss, that is c(xi, yi, f(xi)) = max(0, 1−
yif(xi)), we can use the ν parameterization to get the following equation.

min
f∈H,k∈H

1
m

∑m
i=1 ξi − νρ+ 1

2‖f‖
2
H + λQ

2 ‖k‖
2
H

subject to yif(xi) > ρ− ξi

ξi > 0

ρ > 0

By considering the optimization problem dependent on f , we can use the derivation
of the dual problem in the standard ν-SVM. The following equation expresses this
in matrix notation and also replaces ‖k‖2H = β>Kβ which is possible due to the
representer theorem.

min
β

max
α

−1
2α

>G(β)α+ λQ

2 β
>Kβ

subject to y>α = 0
1>α > ν

0 6 αi 6 1
m for all i = 1, . . . ,m

βi > 0

(A.13)

We derive the corresponding semidefinite program for the above optimization problem.
We rewrite the terms of A.13 dependent on α in terms of their Wolfe dual. The
corresponding Lagrange function is given by the following equation.

L(α, γ, χ, η, ξ, χ) = −1
2
α>G(β)α+ η>α− ξ>(α− 1

m
) + γy>α+ χ(1>α− ν) (A.14)
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where the Lagrange multipliers are γ free, χ > 0, η > 0 and ξ > 0. Then, differentiating
L(α, γ, χ, η, ξ) with respect to α gives us:

∂L(α, γ, χ, η, ξ)
∂α

= −G(β)α+ η − ξ + γy + χ1

Setting this to zero shows that A.14 is minimized with respect to α for α = G(β)−1(γy+
χ1+η− ξ). For the case when G(β) is positive semidefinite, we can replace the inverse
with the Moore-Penrose generalized inverse, and the following results still follow. For
notational convenience, let z = γy + χ1 + η − ξ.

D(γ, η, ξ) =
1
2
z>G(β)−1z + ξ>

1
m
− χν

The dual optimization problem is given by inserting the previous equation into A.13.

min
β,γ,η,ξ,χ

1
2z

>G(β)−1z + ξ> 1
m − χν + λQ

2 β
>Kβ

subject to χ > 0, η > 0, ξ > 0, β > 0
(A.15)

Introducing auxilliary variables t1 and t2 to bound the quadratic terms in z and β

respectively, we get the following optimization problem.

min
β,γ,η,ξ,χ

1
2 t1 − χν + ξ> 1

m + λQ

2 t2

subject to χ > 0, η > 0, ξ > 0, β > 0
t2 > β>Kβ

t1 − z>G(β)−1z � 0

(A.16)

Using the Schur Complement Lemma and expressing the quadratic constraint as a
second order cone constraint, we get the following semidefinite program.

min
β,γ,η,ξ,χ

1
2 t1 − χν + ξ> 1

m + λQ

2 t2

subject to χ > 0, η > 0, ξ > 0, β > 0
‖K

1
2β‖2 6 t2[
G(β) z

z> t1

]
� 0

(A.17)

We replace ‖K
1
2β‖2 6 t2 by ‖K

1
2β‖ 6 t2, and add the scale breaking constraint

1>β = 1, we get the relevant optimization problem. The classification function is
given by f = KG(β)−1(z ◦ y)− γ.
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A.2.3 L2 SVM (Lagrangian SVM)

Recall the primal problem of the Lagrangian SVM,

min
w,ξ,b

λ

2
(
‖w‖2 + b2

)
+

1
m

m∑
i=1

ξ2i

subject to yi(〈φ(xi), w〉+ b) > 1− ξi

and its associated dual

min
α∈Rm

1
2

m∑
i=1

αiαjyiyj(Kij + 1 + λmδij)−
m∑

i=1

αi

subject to αi > 0 for all i = 1, . . . ,m.

Note that w =
∑m

i=1 yiαiφ(xi), b =
∑m

i=1 αi, ξi = λmαi. We derive the regularized
quality functional and the SDP that can be used to solve it by setting the cost function
to the L2 soft margin loss, that is

c(xi, yi, f(xi)) =

0 if yif(xi) > 1

(1− yif(xi))2 otherwise

and regularizing the offset constant as well, we obtain the Lagrangian SVM of Man-
gasarian and Musicant [2001].

min
w,ξ,b,k

1
m

∑m
i=1 ξ

2
i + λ

2 (‖w‖2H + b2) + λQ

2 ‖k‖
2
H

subject to yi(〈φ(xi), w〉+ b) > 1− ξi

ξi > 0

By considering the optimization problem dependent on w and b, we can use the deriva-
tion of the dual problem in the standard Lagrangian-SVM. The following equation
expresses this in matrix notation and also replaces ‖k‖2H = β>Kβ which is possible
due to the representer theorem.

min
β

max
α

1>α− 1
2α

>H(β)α+ λQ

2 β
>Kβ

subject to αi > 0 for all i = 1, . . . ,m
β > 0

(A.18)

whereH(β) = Y (K+1m×m+λmI)Y.We derive the corresponding semidefinite program
for the above optimization problem. We rewrite the terms of A.18 dependent on α
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in terms of their Wolfe dual. The corresponding Lagrange function is given by the
following equation.

L(α, γ, η) = 1>α− 1
2
α>H(β)α+ η>α (A.19)

where the Lagrange multipliers are η > 0 Then, differentiating L(α, η) with respect to
α gives us:

∂L(α, η)
∂α

= 1−H(β)α+ η

Setting this to zero shows that A.19 is minimized with respect to α for α = H(β)−1(1+
η). For the case when H(β) is positive semidefinite, we can replace the inverse with
the Moore-Penrose generalized inverse, and the following results still follow.

D(η) =
1
2
(η + 1)>H(β)−1(η + 1)

The dual optimization problem is given by inserting the previous equation into A.18.

min
β,η

1
2(η + 1)>H(β)−1(η + 1) + λQ

2 β
>Kβ

subject to η > 0, β > 0
(A.20)

Introducing auxilliary variables t1 and t2 to bound the quadratic terms in w and β

respectively, we get the following optimization problem.

min
β,η

1
2 t1 + λQ

2 t2

subject to η > 0, β > 0
t2 > β>Kβ

t1 − (η + 1)>H(β)−1(η + 1) � 0

(A.21)

Using the Schur Complement Lemma and expressing the quadratic constraint as a
second order cone constraint, we get the following semidefinite program.

min
β,η

1
2 t1 + λQ

2 t2

subject to η > 0, β > 0
‖K

1
2β‖2 6 t2[
H(β) (η + 1)

(η + 1)> t1

]
� 0

(A.22)

We replace ‖K
1
2β‖2 6 t2 by ‖K

1
2β‖ 6 t2, and add the scale breaking constraint

1>β = 1, we get the relevant optimization problem. The classification function is
given by f = KH(β)−1((η + 1) ◦ y).
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A.2.4 Singleclass SVM

Recall the novelty detection version of SVM,

min
w,ξ,ρ

1
2
‖w‖2 − ρ+

1
νm

m∑
i=1

ξi

subject to 〈xi, w〉 > ρ− ξi

ξi > 0 for all i = 1, . . . ,m

ρ > 0,

and the dual formulation

min
α∈Rm

1
2

m∑
i=1

αiαjk(xi, xj)

subject to
∑m

i=1 αi = 1

0 6 αi 6 1
νm for all i = 1, . . . ,m.

We derive the regularized quality functional and the SDP that can be used to solve
it by setting the cost function to the L1 soft margin loss, that is c(xi, yi, f(xi)) =
max(0, 1− yif(xi)), and dividing throughout by ν following equation.

min
f∈H,k∈H

1
mν

∑m
i=1 ξi − ρ+ 1

2‖f‖
2
H + λQ

2ν ‖k‖
2
H

subject to f(xi) > ρ− ξi

ξi > 0

By considering the optimization problem dependent on f , we can use the derivation of
the dual problem in the standard single class setting. The following equation expresses
this in matrix notation and also replaces ‖k‖2H = β>Kβ which is possible due to the
representer theorem.

min
β

max
α

−1
2α

>Kα+ λQ

2ν β
>Kβ

subject to 1>α = 1
0 6 αi 6 1

νm for all i = 1, . . . ,m
βi > 0

(A.23)

We derive the corresponding semidefinite program for the above optimization problem.
We rewrite the terms of A.23 dependent on α in terms of their Wolfe dual. The
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corresponding Lagrange function is given by the following equation.

L(α, γ, η, ξ) = −1
2
α>Kα+ η>α− ξ>(α− 1

νm
) + γ(1>α− 1) (A.24)

where the Lagrange multipliers are γ free, η > 0 and ξ > 0. Then, differentiating
L(α, γ, η, ξ) with respect to α gives us:

∂L(α, γ, η, ξ)
∂α

= −Kα+ η − ξ + γ1

Setting this to zero shows that A.24 is minimized with respect to α for α = K−1(γ1 +
η−ξ). For the case when K is positive semidefinite, we can replace the inverse with the
Moore-Penrose generalized inverse, and the following results still follow. For notational
convenience, let z = γ1 + η − ξ.

D(γ, η, ξ) =
1
2
z>K−1z + ξ>

1
νm

− γ

The dual optimization problem is given by inserting the previous equation into A.23.

min
β,γ,η,ξ

1
2z

>K−1z + ξ> 1
νm − γ + λQ

2ν β
>Kβ

subject to η > 0, ξ > 0, β > 0
(A.25)

Introducing auxilliary variables t1 and t2 to bound the quadratic terms in z and β

respectively, we get the following optimization problem.

min
β,γ,η,ξ

1
2 t1 + ξ> 1

νm − γ + λQ

2ν t2

subject to η > 0, ξ > 0, β > 0
t2 > β>Kβ

t1 − z>K−1z � 0

(A.26)

Using the Schur Complement Lemma and expressing the quadratic constraint as a
second order cone constraint, we get the following semidefinite program.

min
β,γ,η,ξ

1
2 t1 + ξ> 1

νm − γ + λQ

2ν t2

subject to η > 0, ξ > 0, β > 0
‖K

1
2β‖2 6 t2[
K z

z> t1

]
� 0

(A.27)

The detection function is given by f = η − ξ.
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A.2.5 ν-Regression

Recall the ν-regression primal problem,

min
w,ξ,ξ∗,ε,b

1
2
‖w‖2 + C

(
νε+

1
m

m∑
i=1

(ξi + ξ∗i )

)
subject to (〈xi, w〉+ b)− yi 6 ε− ξi

yi − (〈xi, w〉+ b) 6 ε− ξ∗i

ε > 0 for all i = 1, . . . ,m

ξI , ξ
∗
i > 0

and the associated dual problem

max
α,α∗∈Rm

m∑
i=1

(α∗i − αi)yi −
1
2

m∑
i=1

(α∗i − αi)(α∗j − αj)k(xi, xj)

subject to
∑m

i=1(αi − α∗i ) = 0∑m
i=1(α

∗
i + αi) 6 Cν

0 6 αi, α
∗
i 6 C

m for all i = 1, . . . ,m.

We derive the regularized quality functional and the SDP that can be used to solve it
by setting the cost function to the ε-insensitive loss that is c(xi, yi, f(xi)) = max(0, |yi−
f(xi)| − ε), we can use the ν parameterization to get the following equation.

min
f∈H,k∈H

1
λ

(
νε+ 1

m

∑m
i=1(ξi + ξ∗i )

)
+ 1

2‖f‖
2
H + λQ

2λ ‖k‖
2
H

subject to f(xi)− yi > ε− ξi

yi − f(xi) > ε+ ξ∗i

ξ
(∗)
i > 0

ε > 0

By considering the optimization problem dependent on f , we can use the derivation
of the dual problem in the standard ν-SVR. The following equation expresses this
in matrix notation and also replaces ‖k‖2H = β>Kβ which is possible due to the
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representer theorem. Define F (β) =

[
K −K
−K K

]
and α̂ =

[
α

α∗

]
.

min
β

max
α

[
−y
y

]>
α̂− 1

2 α̂
>F (β)α̂+ λQ

2λ β
>Kβ

subject to

[
1

−1

]>
α̂ = 0[

1

1

]>
α̂ 6 ν

λ

0 6 α̂ 6 1
mλ

for all i = 1, . . . , 2m
β > 0

(A.28)

We derive the corresponding semidefinite program for the above optimization problem.
We rewrite the terms of A.28 dependent on α in terms of their Wolfe dual. The
corresponding Lagrange function is given by the following equation.

L(α̂, γ, χ, η, ξ) =

[
−y
y

]>
α̂− 1

2 α̂
>F (β)α̂− γ

[
1

−1

]>
α̂η>α̂

−ξ>(α̂− 1
mλ)− χ

[ 1

1

]>
α̂− ν

λ

 (A.29)

where the Lagrange multipliers are γ free, χ > 0, η > 0 and ξ > 0. Then, differentiating
L(α̂, γ, χ, η, ξ) with respect to α gives us:

∂L(α̂, γ, χ, η, ξ)
∂α̂

=

[
−y
y

]
− F (β)α̂− γ

[
1

−1

]
+ η − ξ + χ1

Setting this to zero shows that A.29 is minimized with respect to α̂ for

α̂ = F (β)−1

([
−y
y

]
− γ

[
1

−1

]
+ η − ξ + χ1

)

For the case when G(β) is positive semidefinite, we can replace the inverse with the
Moore-Penrose generalized inverse, and the following results still follow. For notational

convenience, let z =

[
−y
y

]
− γ

[
1

−1

]
+ η − ξ + χ1.

D(γ, η, ξ, χ) =
1
2
z>G(β)−1z + ξ>

1
mλ

+
χν

λ
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The dual optimization problem is given by inserting the previous equation into A.28.

min
β,γ,η,ξ,χ

1
2z

>F (β)−1z + ξ> 1
mλ −

χν
λ + λQ

2λ β
>Kβ

subject to χ > 0, η > 0, ξ > 0, β > 0
(A.30)

Introducing auxilliary variables t1 and t2 to bound the quadratic terms in z and β

respectively, we get the following optimization problem.

min
β,γ,η,ξ,χ

1
2 t1 + χν

λ + ξ> 1
mλ + λQ

2λ t2

subject to χ > 0, η > 0, ξ > 0, β > 0
t2 > β>Kβ

t1 − z>F (β)−1z � 0

(A.31)

Using the Schur Complement Lemma and expressing the quadratic constraint as a
second order cone constraint, we get the following semidefinite program.

min
β,γ,η,ξ,χ

1
2 t1 + χν

λ + ξ> 1
mλ + λQ

2λ t2

subject to χ > 0, η > 0, ξ > 0, β > 0
‖K

1
2β‖2 6 t2[
F (β) z

z> t1

]
� 0

(A.32)

The classification function is given by f =
[
−K K

]
F (β)−1z − γ.



Appendix B

Proof of Generalization Bounds

Proof (of Proposition 28).

We first compute an expression which upper bounds the Rademacher average.

Eε sup
f∈BK

(
n∑

i=1

εif(xi)

)2

= Eε sup
f∈BK

(
n∑

i=1

εi〈f(.), k(xi, .)〉K

)2

(B.1)

= Eε sup
f∈BK

(
〈f(.),

n∑
i=1

εik(xi, .)〉K

)2

(B.2)

= Eε

∥∥∥ n∑
i=1

εik(xi, .)
∥∥∥2

K
(B.3)

=
n∑

i=1

∥∥k(xi, .)
∥∥2

K (B.4)

=
n∑

i=1

k(xi, xi) = Tr(K) (B.5)

Equation (B.2) is obtained first by using the reproducing property and then because
of the linearity of the inner product. Equation (B.3) is due to the Hilbertian topology
of underlying Krĕın spaces (Lemma 27). Equation (B.4) is obtained thanks to a nice
property of the Rademacher average [Mendelson, 2003]. The inner product in (B.1) is
the norm in the associated Hilbert space. We obtain (B.2) since Rademacher random
variables are independent.

By Mendelson [2003, Theorem 15] we know that,

Eε sup
f∈BK

∣∣∣∣∣
n∑

i=1

εif(xi)

∣∣∣∣∣ ≤
Eε sup

f∈BK

(
n∑

i=1

εif(xi)

)2
 1

2

.
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Then using Jensen’s inequality, and using the fact that Xi are i.i.d. we have,

Rn(BK) ≤ 1
n

Eµ

[
tr
(
K
) 1

2
]

≤ 1
n

[
Eµtr

(
K
)] 1

2

=
1√
n

[
Eµ

(
k(X,X)

)] 1
2

=
1√
n

[∫
X
k(x, x)dµ(x)

] 1
2 ,



Appendix C

Details of proof of

semi-convergence

This section reproduces the proofs of Hanke [1995a, Lemma 3.7 Lemma 3.8].

C.1 Eigenvalue decomposition

Let λi, ui be the eigen system associated with regular matrix K associated with a linear
operator from Rm to Rm (such that Kui = λiui). Let p be a polynomial and e a vector
in Rm.

‖p(K)e‖2 =
∥∥∥p(K)

m∑
i=1

〈e, ui〉ui

∥∥∥2

=
∥∥∥ m∑

i=1

〈e, ui〉p(K)ui

∥∥∥2

=
∥∥∥ m∑

i=1

〈e, ui〉p(λi)ui

∥∥∥2

≤ sup
i=1,...,m

p(λi)2
∥∥∥ m∑

i=1

〈e, ui〉ui

∥∥∥2

≤ sup
i=1,...,m

p(λi)2
m∑

i=1

〈e, ui〉2 ≤ p(λ∗)2‖e‖2,

where λ∗ is the eigenvalue that maximizes supi=1,...,m p(λi).

C.2 Lemmas for Bounding the Residual

Let θi,k be the ith root of the residual polynomial pk(λ) of order k. An important
root for the proof is θ1,k, the root closest to zero (see Figure C.1). Recall that we can
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express a polynomial as a product of its roots, that is

pk(λ) =
k∏

i=1

(
1− λ

θi,k

)
and hence p′k(0) = −

k∑
i=1

1
θi,k

.

Note that p′k(0) < 0 and |p′k(0)| > k and recall that λi are the eigenvalues of K
the kernel matrix sorted in decreasing order. For two polynomials, we define their
orthogonality via the inner product

〈φ, ψ〉poly := 〈φ(K)y,Kψ(K)y〉Rm ,

where y ∈ Rm. Define ‖v‖(a,b) :=
√∑b

i=a v
2
i and let

ϕk(λ) := pk(λ)
(

θ1,k

θ1,k − λ

) 1
2

, for 0 6 λ 6 θ1,k.

We prove four technical lemmas which are then used to prove Theorem 36.

Figure C.1: The parameter of interest is based on the gradient of the residual polynomial,
p′k(0). Note that pk(λ) is convex in [0, θ1,k].

Lemma 40 Choose j such that λj > θ1,k > λj+1. Then

j∑
i=1

p2
k(λi)

λi

θ1,k − λi
(yδ)2i >

m∑
i=j+1

p2
k(λi)(yδ)2i .
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Proof Since pk(λ) are residual polynomials, they are orthogonal, and hence pk(λ) and
pk(λ)

λ−θ1,k
are orthogonal. That is

〈pk(λ)yδ, λ
pk(λ)
λ− θ1,k

yδ〉 = 0.

This means that
m∑

i=1

p2
k(λi)(yδ)2i

λi

λi − θ1,k
= 0.

Splitting the sum into two parts

j∑
i=1

p2
k(λi)(yδ)2i

λi

θ1,k − λi
=

m∑
i=j+1

p2
k(λi)(yδ)2i

λi

λi − θ1,k
.

Since λi
λi−θ1,k

> 1, the right hand side is greater than
∑m

i=j+1 p
2
k(λi)(yδ)2i and the result

follows.

Lemma 41 Choose j such that λj > θ1,k > λj+1 and let v ∈ Rm be any vector. Then

‖pk(K)v‖ 6 ‖ϕk(K)v‖(1,j).

Proof

‖pk(K)v‖ =
√∑m

i=1 p
2
k(λi)v2

=
√∑j

i=1 p
2
k(λi)v2 +

∑m
i=j+1 p

2
k(λi)v2 where j is as in Lemma 40

6
√∑j

i=1 p
2
k(λi)v2 + p2

k(λi) λi
θ1,k−λi

v2

=
√∑j

i=1 p
2
k(λi)v2

(
1 + λi

θ1,k−λi

)
=
√∑j

i=1 p
2
k(λi)v2

(
θ1,k

θ1,k−λi

)
=
√∑j

i=1 ϕ
2
k(λi)v2 using the definition of ϕk(λi)

= ‖ϕk(K)v‖(1,j).

Lemma 42

ϕ2
k(λ) 6 1 for 0 6 λ 6 θ1,k.
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Proof Observe that pk(λ) 6 1 − λ
θ1,k

for λ ∈ [0, θ1,k]. The result follows by some
algebraic manipulation of p2

k(λ),

p2
k(λ) 6 1− λ

θ1,k

p2
k(λ)

(
θ1,k

θ1,k−λ

)
6 1.

Lemma 43

λ2ϕ2
k(λ) 6 4|p′k(0)|−2 for 0 6 λ 6 θ1,k.

Proof Let J(λ) = λ2ϕ2
k(λ). The maximum value of J(λ) occurs at the point where

J ′(λ) = 0. Substituting the definition of ϕ2
k(λ), we get

J(λ) = λ2
k∏

i=1

(
1− λ

θi,k

) k∏
i=2

(
1− λ

θi,k

)
.

Hence

J ′(λ) = λ
k∏

i=1

(
1− λ

θi,k

) k∏
i=2

(
1− λ

θi,k

)(
2 +

λ

θ1,k − λ
−

k∑
i=1

2λ
θi,k − λ

)
.

Let λ∗ be the point at which the maximum is attained, and hence

2−
k∑

i=1

λ∗

θi,k − λ∗
= − λ∗

θi,k − λ∗
+

k∑
i=1

λ∗

θi,k − λ∗
=

k∑
i=2

λ∗

θi,k − λ∗
> 0.

Therefore

2 >
k∑

i=1

λ∗

θi,k − λ∗
>

k∑
i=1

λ∗

θi,k
= λ∗|p′k(0)|.

The result is obtained by chaining the inequalities together

λ2ϕ2
k(λ) 6 λ∗2ϕ2

k(λ
∗) 6

4
|p′k(0)|2

.

Proof [of Theorem 36]
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By the definition of empirical risk and the residual polynomial of MR,

Remp(fk) = ‖yδ −Kαδ
k‖

= ‖pk(K)yδ‖ where we assumed αδ
0 = 0

6 ‖ϕk(K)yδ‖ by Lemma 41,

where ϕk(λ) := pk(λ)
(

θ1,k

θ1,k−λ

) 1
2
, for 0 6 λ 6 θ1,k and θ1,k is the first root of the

residual polynomial pk(λ). We can now bound the norm of the residual using the norm
inequalities

Remp(fk) 6 ‖ϕk(K)(yδ − y)‖+ ‖ϕk(K)y‖ using the triangle inequality
6 ‖yδ − y‖+ ‖ϕk(K)Kα∗‖ by Lemma 42 and Kα∗ = y

6 ‖yδ − y‖+ 2|p′k(0)|−1‖α∗‖ by Lemma 43.

The result is obtained by observing that Remp(t) = ‖yδ −Kα∗‖ = ‖yδ − y‖.

C.3 Lemmas for Bounding the Error

In the results below recall that ‖v‖(a,b) :=
√∑b

i=a v
2
i .

Lemma 44 We choose j such that λj 6 |p′k(0)|−1, then

‖αδ
k − α∗‖(1,j) 6 |p′k(0)|Remp(t) + ‖α∗‖.

Proof Recall that qk−1 is the iteration polynomial associated with applying MR to
the problem Kα = yδ. Define α̂k := qk−1(K)y, and observe that this is not the same as
applying MR to the unperturbed data y, since in general, this would result in a different
polynomial. Note that since pk(λ) = 1− λqk−1(λ) we can derive α− α̂k = pk(K)α.

‖αδ
k − α∗‖(1,j) 6 ‖αδ

k − α̂‖(1,j) + ‖α̂− α∗‖(1,j)

6 ‖qk−1(K)(yδ − y)‖(1,j) + ‖pk(K)α∗‖(1,j)

6 ‖qk−1(K)‖‖yδ − y‖(1,j) + ‖ϕk(K)α∗‖(1,j),

where the last line was obtained by application of Lemma 41. Since pk is convex in
[0, λj ],

0 6 qk−1(λ) =
1− pk(λ)

λ
6 |p′k(0)|.

Using Lemma 42, and the bound on qk−1, we obtain the result.
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Lemma 45 For the value of j chosen in Lemma 44,

‖αδ
k − α∗‖(j+1,m) 6 2‖K†‖

(
Remp(t) +

1
|p′k(0)|

‖α∗‖
)
.

Proof

‖αδ
k − α‖(j+1,m) = ‖K†Kαδ

k −K†y‖(j+1,m)

6 ‖K†‖‖Kαδ
k − y‖(j+1,m)

6 ‖K†‖
(
‖Kαδ

k − yδ‖(j+1,m) + ‖yδ − y‖(j+1,m)

)
.

where the last line was obtained by the triangle inequality. Recall the definition of
Remp(fk) = ‖yδ−Kαδ

k‖ and Remp(t) = Remp(t∗) = ‖yδ−y‖. By applying Theorem 36,
we get the result.

Proof [of Theorem 37]
The difference between the real risk on the function associated with iteration k of

MR and the true function is given by,

R(fk)−R(t) 6 ‖fk − t‖.

Define t∗ to be the projection of the unknown function t onto the domain of T ∗, that
is t∗ = T ∗α∗ where α∗ is the solution of the unperturbed problem Kα∗ = y. Then by
the triangle inequality,

‖fk − t‖ 6 ‖fk − t∗‖+ ‖t∗ − t‖
= ‖T ∗αδ

k − T ∗α‖+ ‖t∗ − t‖
6 ‖T ∗‖‖αδ

k − α‖+ ‖t∗ − t‖.

We choose j such that the jth eigenvalue of K denoted λj 6 |p′k(0)|−1. Observe that

‖αδ
k − α‖ 6 ‖αδ

k − α‖(1,j) + ‖αδ
k − α‖(j+1,m),

where we define ‖v‖(a,b) :=
√∑b

i=a v
2
i . We apply Lemma 44 to bound the first term

on the right hand side and Lemma 45 to bound the second term. Hence

‖αδ
k − α‖ 6 |p′k(0)|Remp(t) + ‖α∗‖+ 2‖K†‖

(
Remp(t) +

1
|p′k(0)|

‖α∗‖
)
,

and the result follows.
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Luc Devroye, László Györfi, and Gábor Lugosi. A Probabilistic Theory of Pattern
Recognition. Springer Verlag, 1996.

Michael A. Dritschel and James Rovnyak. Operators on indefinite inner product spaces.
In Lectures on operator theory and its applications, volume 3 of Fields Institute
Monographs, pages 141–232, 1996.

K. Duan, S.S. Keerthi, and A.N. Poo. Evaluation of simple performance measures for
tuning SVM hyperparameters. Neural Computation, 51:41–59, 2003.

Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. John
Wiley & Sons, second edition, 2000.

Heinz W. Engl. Regularization methods for the stable solution of inverse problems. In
Lecture Notes for Summer School ‘Jacques Louis Lions’ Multidisciplinary Methods
for Analysis, Optimization and Control of Complex Systems, 2003. The Lecture
Notes will be published in the Mathematics in Industry Series of Sprniger-Verlag.
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