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Abstract. Protein subcellular localization is a crucial ingredient to many impor-
tant inferences about cellular processes, including prediction of protein function
and protein interactions. While many predictive computational tools have been
proposed, they tend to have complicated architectures and require many design
decisions from the developer.

Here we utilize the multiclass support vector machine (m-SVM) method to
directly solve protein subcellular localization without resorting to the common
approach of splitting the problem into several binary classification problems. We
further propose a general class of protein sequence kernels which considers all
motifs, including motifs with gaps. Instead of heuristically selecting one or a few
kernels from this family, we utilize a recent extension of SVMs that optimizes
over multiple kernels simultaneously. This way, we automatically search over
families of possible amino acid motifs.

We compare our automated approach to three other predictors on four different
datasets, and show that we perform better than the current state of the art. Further,
our method provides some insights as to which sequence motifs are most useful
for determining subcellular localization, which are in agreement with biological
reasoning. Data files, kernel matrices and open source software are available at
http://www.fml.mpg.de/raetsch/projects/protsubloc.

1 Introduction

Support vector machines (SVMs, e.g. [1]) are in widespread and highly successful use
for bioinformatics tasks. One example is the prediction of the subcellular localization
of proteins. SVMs exhibit very competitive classification performance, and they can
conveniently be adapted to the problem at hand. This is done by designing appropriate
kernel functions, which can be seen as problem-specific similarity functions between
examples. The kernel function implicitly maps examples from their input space X to
a space H of real-valued features (e.g. H = Rd, d ∈ N ∪ {∞}) via an associated
function Φ : X → H. The kernel function k provides an efficient method for implicitly
computing dot products in the feature space H via k(xi,xj) = 〈Φ(xi), Φ(xj)〉.

Many different types of features have been used for SVM-based subcellular local-
ization prediction. One popular class of features are compositions, i.e. histograms of
subsequences. The most common choice of subsequences are single amino acids. One
can also generalise this to pairs of adjacent amino acids, pairs of amino acids with
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one position gap between them, pairs separated by two positions, and also for longer
patterns [2]. A more widespread idea is to capture the statistics of signal peptides by
computing compositions on relevant parts of a protein separately [3,4]. In section 2, we
define kernels that generalize these ideas. Apart from compositions, further features in-
clude the search for known motifs [5,6] or PFAM domains [3], the use of PSI-BLAST
profiles [7], and the use of PSI-BLAST similarities to other sequences [8]. In some
cases, even SVMs or other classifiers are employed for feature generation or for motif
detection [5,6].

When more than one set of features have been defined and computed, the task is
to combine the evidence they yield into a single final prediction. This is often done
in complex, hand-crafted architectures that frequently consist of two (or even more)
layers of learning machines or decision systems. Instead, we utilize the novel multiclass
multiple kernel learning (MCMKL) method [9], which optimally selects kernels from
a given set and combines them into an SVM classifier (Section 3). Both are jointly
applied to protein subcellular localization prediction in Section 4.

2 Motif Composition Kernels

2.1 Amino Acid Kernel and Motif Kernel

Before we consider motifs consisting of several amino acids, we define a kernel on
individual amino acids (AAs). This will be useful as an ingredient to the more complex
motif kernel. The AA kernel takes into account pairwise similarity of amino acids.

Let A be the set of 20 amino acids. A substitution matrix M consists of a real-valued
element mab for each pair of amino acids a and b. As substitution matrices are not in
general valid kernel functions, we apply some transformations. It has been shown that
every sensible substitution matrix M implies a matrix R of amino acid substitution
probabilities via mab = 1

λ log rab

qaqb
. Here qa is the so-called background probability of

a, its relative frequency of appearance in any protein sequence. Given the constraints∑
a

∑
b rab = 1 and qa =

∑
b rab and the symmetry of both M and R, R can be

computed from M . We do so for the popular BLOSUM62 matrix [10] serving as M .
The elements of the obtained R, being substitution probabilities, are positive, and

thus R can be seen as a (complete) similarity graph between amino acids with weighted
edges. From this we derive a positive definite kernel kAA

1 on the amino acids by taking
the graph Laplacian:

kAA
1 (a, b) =

∑

c

rac − rab . (1)

Note that other choices of kernels are possible. One alternative is the diffusion kernel,
which is computed by taking the matrix exponential of a scalar multiple of R. In this
context we prefer the graph Laplacian since it does not have any parameters to be ad-
justed. We extend the AA-kernel to r-tuples of amino acids (“motifs”) by simply adding
kernel values over the components. For s, t ∈ Ar we define the motif kernel

kAA
r (s, t) =

r∑

i=1

kAA
1 (si, ti) . (2)

Note that these kernels cannot be direclty applied to variable-length protein sequences.
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2.2 Motif Compositions

Previous work has shown that the amio acid composition (AAC) of a sequence is a
useful basis for classifying its subcellular localization [11]. An advantage of this set
of features is that it is robust with respect to small errors in the sequences, as may be
caused by automated determination from genomic DNA. In subsequent work the AAC
has been generalized in two directions.

First, instead of just considering the AAC of the entire protein sequence, it was cal-
culated on different subsequences [3,6,12]. This is motivated by the fact that important
indications of localization are not global. For example, the targeting of a protein to the
mitochondrion or to the chloroplast is indicated by an N-terminal signal peptide with
specific properties (for example pH or hydrophobicity) that are reflected by the AAC.

Second, it was noted that features which represent dependencies between two or
more amino acids can increase the prediction performance. This seems plausible since
there exist a number of (rather short) known motifs that are important for subcellu-
lar targeting. Examples include the C-terminal targeting signal for microbodies (SKL),
the C-terminal endoplasmatic reticulum targeting sequence (KDEL), and the bipartite
nuclear targeting sequence (which consists of five basic amino acids, R or K, in a cer-
tain arrangement). Existing prediction methods that generalize the AAC to higher or-
der compositions do so in at least two ways: [2] and [8] use composition of pairs of
amino acids, possibly with fixed-length gaps between them; [4] consider distributions
of consecutive subsequences of length r, where a reduced size alphabet is used to avoid
combinatorial explosion of the feature space for large r.

Here we carry the generalization a bit further, by allowing for patterns consisting
of any number r of amino acids in any (fixed) positional arrangement. For example,
we could choose the frequencies of occurance of AA triplets with two positions gap
between the first two and no gap between the second two, corresponding to a pattern
(•,◦,◦,•,•). For any given pattern, we can compute the empirical distribution of corre-
sponding motifs from a given AA sequence. This is a histogram of occurrences of each
possible r-mer sequence. The example above will result in a histogram of all possible
3-mers where each sequence is represented by the counts of the occurrences of each
3-mer with the specified gap. Note that the combinatorial explosion of possible motifs
for increasing order r is not a real problem, because the number of motifs with positive
probability is bounded by the protein length, and we employ sparse representations.

2.3 Motif Composition Kernels

The feature sets defined just above are histograms, and after normalization they are
probability distributions over discrete sets. While we can use standard kernels (like the
Gaussian RBF) on these data, this would neglect the fact that they are not arbitrary
vectors, but in fact carry a special structure. Hence we use kernels that are specially
designed for probability distributions [13]. These kernels have the added benefit of al-
lowing us to model pairwise similarities between amino acids. To our knowledge, this
is the first time such kernels have been applied to protein sequence analysis.

We use the Jensen-Shannon divergence kernel (corresponding to α = 1 in [13]),
which is based on a symmetric version of the Kullback-Liebler divergence of
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information theory. Applied to histograms on patterns of order r we have

kJS
r (p, q) =

∑

s∈Ar

∑

t∈Ar

kAA
r (s, t)

(

p(s) log
p(s)

p(s) + q(t)
+ q(t) log

q(t)
p(s) + q(t)

)

,

(3)
where p and q are the r-mer histograms obtained from two sequences, and s and t run
over the amino acid motifs. For this paper, we define the kernels between amino acids
kAA(s, t) using the summed graph Laplacian defined in Equations (1) and (2).

Even using these choices, we are still left with a large number of possible patterns
(as defined in Section 2.2) to consider. As linear combinations of kernels are again valid
kernels [1], we could fix coefficients (e.g., uniform weights) and work with the resulting
weighted sum kernel. However, it can be difficult to find optimal weights.

3 Multiclass Multiple Kernel Learning

Multiple kernel learning (MKL) is a technique for optimizing kernel weights βp in a
linear combination of kernels, k(x,x′) =

∑
p βpkp(x,x′). Thereby MKL is capable of

detecting useless sets of features (noise) and eliminating the corresponding kernel (by
giving it zero weight). Consequently MKL can be useful for identifying biologically
relevant features [14,15]. In this paper we use the newly proposed multiclass extension
(see Figure 1) of MKL, called multiclass multiple kernel learning, MCMKL [9].

Multiclass multiple kernel learning com-
bines two generalizations of SVMs. The
first is to learn more complex output
spaces (including multiclass) than the
simple binary classification task by ex-
tending the kernel to also encode classes
(the horizontal arrow). The second is to
simultaneously optimize over the coeffi-
cients in a linear combination of kernels,
hence automatically weighting different
feature spaces (the vertical arrow).

Fig. 1. The approach in [9] generalizes the idea of kernel machines in two directions

While binary SVMs have a single hyperplane normal w in feature space, multiclass
SVMs (as considered here) have a different hyperplane normal wu for each class u.
Thus a trained MCMKL classifier has a separate confidence function

fu(x) =

〈

wu ,
∑

p

βpΦp(x)

〉

=
∑

i

αiu

∑

p

βpkp(xi,x) (4)

for each class u, where the latter equality derives from the expansion of the hyperplane
normals wu =

∑
i αiuΦ(xi) (due to the Representer Theorem [1] or by Lagrange
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dualization). The predicted class for a given example x will be chosen to maximize the
confidence, that is ŷ(x) = argmaxu fu(x).

Using an approach similar to that in [15], we convert the dual into an equivalent
semi-infinite linear program (SILP) formulation by a second (partial) dualization.

max
β

θ s.t. ∀α ∈ A : θ ≤ 1
2

∑

k

βk ‖wk(α)‖2 −
∑

i

αiyi ,

and

p∑

k=1

βk = 1, ∀k : 0 ≤ βk ,

(5)

where

A =

⎧
⎪⎪⎨

⎪⎪⎩
α

∣
∣
∣
∣
∣
∣
∣
∣

∀i : 0 ≤ αiyi ≤ C
∀i : ∀u �= yi : αiu ≤ 0
∀i :

∑
u∈Y αiu = 0

∀u ∈ Y :
∑

i αiu = 0

⎫
⎪⎪⎬

⎪⎪⎭

is the set of admissable parametrizations for the first constraint. For details on the proof
see the Supplement and [9]. For a fixed β, Equation (5) is a quadratic program (QP)
which is only slightly more complicated than a standard SVM: it solves a direct multi-
class SVM. Furthermore, for fixed α the optimization problem in β is a linear program
(LP). However, the constraint on θ has to hold for every suitable α, hence the name
(refering to the infinitely many constraints).

We follow [15] and use a column generation strategy to solve (5): Solving the QP
given by the constraints for a fixed β results in a particular α, which gives rise to
a constraint on θ which is linear in β. We alternate generating new constraints and
solving the LP with the constraints collected so far (Figure 2). This procedure is known
to converge [16,15]. For more details on this model and how it can be trained, that is how
the values of the parameters αiu and βp can be optimized, see [9]. Essentially the same
model, though with a particular arrangement of kernels and a different optimization, is
developed in [17]. Another related approach is described in [18].

4 Computational Experiments

To predict subcellular localization, we use motif kernels up to length 5 as defined in
Section 2. Note that 205 (3.2 million) different motifs of the form (•,•,•,•,•) exist;
due to the Jensen-Shannon transformation (eq. 3) the feature spaces are even infinite
dimensional. Apart from using the whole sequence, we compute the motif kernels on
different sections of the protein sequences, namely the first 15 and 60 amino acids from
the N-terminus and the 15 amino acids from the C-terminus (inspired by [6]). This
results in 4 × 2(5−1) = 64 motif kernels.

We augment the set of kernels available to the classifier by two small families based
on features which have been shown to be useful for subcellular localization [19,20]. Us-
ing the pairwise E-value of BLAST as features, we compute a linear kernel, a Gaussian
RBF kernel [1] with width 1000, and another Gaussian kernel with width 100000 from
the logarithm of the E-value of BLAST. The second additional kernel family is derived
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from phylogenetic profiles [21]. Using the results from their webserver (http://
apropos.icmb.utexas.edu/plex/) as features, we compute a linear kernel
and a Gaussian kernel of width 300. The Gaussian kernel widths were selected from
a coarse grid by running MCMKL separately on each of the two kernel families; the
range of the grid was inspired by the distribution of pairwise Euclidean distances of the
feature vectors.

In total, we thus consider 69 candidate kernels. This renders manual selection and
weighting tedious or even impossible, and thus calls for MKL. As in standard binary
single-kernel SVMs, there is a parameter “C” in the MCMKL method to tune the regu-
larization. We normalize each kernel such that setting C = 1 will at least be a reasonable
order of magnitute (refer to [9] for details).

The subsequent protocol for all our experiments is as follows:

– Ten random splits into 80% training and 20% test data are prepared.
– For each training set, the parameter C is chosen using 3-fold cross validation on the

training set only. We search over a grid of values C = {1/27, 1/9, 1/3, 1, 3, 9, 27}.
For all tasks, the best C is chosen by maximizing the average F1 score on the
validation (hold out) part of the training set. The F1 score is the harmonic mean
of precision p and recall r, f1 = (2 ∗ p ∗ r)/(p + r). For more details, see the
Supplement.

– Using the selected C, we train MCMKL on the full training set and predict the
labels of the test set.

To compare with existing methods, we compute several different measures of perfor-
mance. We assess the proposed an two different datasets, for which results with other
methods are reported in the literature. The first is the data set used for training and evalu-
ating TargetP [22]. The second dataset is a database of bacterial proteins, PSORTdb [5].

Fig. 2. The SILP approach to MKL training alternates between solving an LP for β and a QP for
α until convergence [9,15]

http://
apropos.icmb.utexas.edu/plex/
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Table 1. Summary of comparative Protein Subcellular Localization results

dataset performance performance [%] of competing method,
name measure MCMKL competitor reference, year

TargetP plant avg. MCC 89.9 ± 1.1 86.0 TargetLoc [6], 2006
TargetP nonplant avg. MCC 89.7 ± 0.8 86.6 TargetLoc [6], 2006
PSORT+, 15.0% out avg. Prec/Recall 95.5 / 94.7 95.9 / 81.3 PSORTb [5], 2004
PSORT-, 13.3% out avg. Prec/Recall 96.4 / 96.3 95.8 / 82.6 PSORTb [5], 2004
PSORT- avg. recall 91.3 90.0 CELLO II [20], 2006

A summary of the overall performance is shown in Table 1. Details of performance are
available in the Supplement.1

4.1 Comparison on TargetP Dataset

The original plant dataset of TargetP [22] is divided into five classes: chloroplast (ch),
mitochondria (mi), secretory pathway (SP), cytoplasm (cy), and nucleus (nuc). How-
ever, in many reported results, cy and nuc are fused into a single class “other” (OT),
and hence we do the same to enable direct comparison. Non-plant is similar, but lacks
the chloroplasts. Each of the 10 random splits contains 21 cross validation optimiza-
tions (3-fold cross-validation to select from 7 values of C), with an additional larger
optimization at the end. For the 3-class problem plant, the computation time for each
split is roughly 10 hours on a 2.4Ghz AMD64 machine.

The results in [22] are reported in terms of Matthew’s correlation coefficient (MCC).
As can be seen in Table 1, the MCC values obtained with our proposed method are
significantly better. Details for each class are shown in the Supplement. The features
most often selected for classification as seen in Figures 3(c) and 3(d) are the kernels
computed from BLAST E-values as well as phylogenetic information. The lists of all
kernels selected are in the Supplement. From Table 2, we see the motif kernels which
are most frequently selected. The motif kernel with pattern (•,◦,◦,◦,◦) only measures
the simple amino acid composition. However, this encodes important global properties
like protein mass or charge; it is thus reassuring to see that it gets selected. However, ob-
serve that several long patterns (•,◦,◦,◦,•) and (•,•,◦,◦,•) are selected in the N-terminus
region, indicating the presence of long meaningful subsequences in that region.

4.2 Comparison on PSORTdb Dataset

We also run computations on sequences and localizations of singly localized proteins
in bacteria obtained from PSORTdb [5] and compare the performance to the predic-
tion tool PSORTb v2.0 [5]. PSORTb v2.0 can withhold a prediction when it is uncer-
tainabout the localization. From their supplementary website we estimate the

1 The Supplement is freely available for download as protsubloc-wabi08-supp.pdf at
http://www.fml.tuebingen.mpg.de/raetsch/projects/protsubloc

http://www.fml.tuebingen.mpg.de/raetsch/projects/protsubloc
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(a) Average F1 score for PSORT+. (b) Average F1 score for PSORT-

(c) Average F1 score for plant (d) Average F1 score for nonplant

Fig. 3. Average F1 score for various features. The horizontal axis indexes the 69 kernels. The two
phylogenetic profile kernels and the three BLAST E-value kernels are on the left. The following
four blocks are the motif kernels on: the whole sequence, the 15 AAs at the C-terminus, the 15
and 60 AAs at the N-terminus. In each subfigure, the bars in the lower panel display the average
optimized kernel weight. The bars in the upper panels show the accuracy obtained from using
each kernel just by itself. The dashed black line shows the performance when all the kernels are
equally weighted (after appropriate normalization). The solid blue line shows the result of our
method for comparison.

proportion of “unknown” predictions to be 15.0% for the Gram positive and 13.3% for
Gram negative bacteria. We estimate probabilistic outputs from our method by applying
the logistic transformation, that is p̂(y|x) = exp fy(x)∑

u exp fu(x) to the SVM confidences. To
obtain comparable figures, we discard the same fractions of most uncertain predictions,
i.e. those with the lowest p̂(ŷ(x)|x). The mean and standard deviations on this reduced
test set are reported in Table 1 in the comparison with PSORTb.

In 2004, PSORTb claimed to be the most precise bacterial localization prediction
tool available [5]. However, as the results in Table 1 suggest, our method performs
dramatically better. The performance assessments for various measures and for each
class, which are reported in the Supplement, confirm this. The numbers show that our
method in general matches the high precision of PSORTb and that we have extremely
high recall levels, resulting in significantly better F1 scores for most localizations in
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Table 2. Sequence motif kernels which have been selected at least 8 times out of the 10 splits for
each dataset

times mean βk kernel (PSORT+)
selected

10 6.23% motif (•,◦,◦,◦,◦) on [1, ∞]
10 3.75% motif (•,◦,•,◦,•) on [1, ∞]
9 2.24% motif (•,◦,•,•,•) on [1, 60]

10 1.32% motif (•,◦,◦,◦,•) on [1, 15]
8 0.53% motif (•,◦,◦,◦,◦) on [1, 15]

times mean βk kernel (plant)
selected

10 5.50% motif (•,◦,◦,◦,◦) on [1, 15]
10 4.68% motif (•,◦,◦,◦,•) on [1, 15]
10 3.48% motif (•,◦,◦,◦,◦) on [1, 60]
8 3.17% motif (•,•,◦,◦,•) on [1, 60]
9 2.56% motif (•,◦,◦,◦,◦) on [1, ∞]

times mean βk kernel (PSORT-)
selected

10 5.04% motif (•,◦,◦,◦,◦) on [1, ∞]
10 1.97% motif (•,◦,◦,•,◦) on [1, ∞]
9 1.57% motif (•,•,◦,◦,◦) on [1, ∞]

10 1.51% motif (•,◦,◦,◦,◦) on [1, 60]
10 1.14% motif (•,◦,◦,◦,◦) on [1, 15]
10 0.82% motif (•,◦,◦,◦,•) on [−15]

times mean βk kernel (nonplant)
selected

9 4.48% motif (•,◦,◦,◦,◦) on [1, 15]
10 3.23% motif (•,◦,◦,•,•) on [1, 15]
9 2.32% motif (•,◦,◦,◦,◦) on [1, ∞]
9 2.17% motif (•,◦,◦,◦,◦) on [1, 60]
8 1.92% motif (•,◦,◦,•,◦) on [1, 60]
9 1.48% motif (•,•,•,◦,◦) on [1, ∞]
8 0.94% motif (•,◦,•,◦,◦) on [1, 15]

both PSORT datasets. We also show in our Supplement that we are still competitive
with PSORTb, even when predicting on all sequences (as opposed to withholding when
unsure). Our method further compares favorably to CELLO II [20], for which results
on the Gram negative bacterial protein set are published.

Similar to the motifs selected in the plant dataset, the BLAST E-values and phyloge-
netic profiles are important (Figure 3(a) and 3(b)). Note also that in all datasets, both the
BLAST E-value as well as the log transformed version turn out to be useful for discrim-
ination. This demonstrates one of the major dilemmas of using only one fixed kernel, as
it may be possible that some transformation of the features may improve classification
accuracy. Note that in Table 2 the motif (•,◦,◦,◦,•) near the C-terminus, [−15, ∞], has
very little weight, and all other motifs are shorter. Indeed, in other experiments (results
not shown), MCMKL with motifs up to length 4 performs equally well.

5 Discussion

First we note that our proposed method improves on established and state of the art
methods for predicting protein subcellular localization. This is the case with respect to
various figures of merit, which also demonstrates the robustness of our method. The
success off our approach comes despite the fact that its design required little time and
care: in contrast to complex competing methods, we only need to provide a sufficient
set of candidate feature spaces (i.e. kernels) and do not have to worry about which one
of them is best. In fact, Figures 3(a)-3(d) show that there is no single best kernel for all
localization prediction tasks, and that kernel combinations can improve on each single
kernel.
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In our setting, the simple unweighted sum of all considered kernels reliably yields
high accuracy. Note that this depends on the normalization of the kernels; while we use a
heuristic, but justified scaling scheme, no theoretically optimal task-independent scaling
method is known. However, we successfully use modern machine learning methods,
specifically multiclass multiple kernel learning (MCMKL), to learn an optimal kernel
weighting (the values βp) for the given classification problem. Indeed the MCMKL
reweighting consistently outperforms the plain normalization: it reduces the error (1 -
score) by roughly 20%. We even used MCMKL to adjust real-valued kernel parameters
by selecting them from a pre-specified coarse grid.

Note that the performance of the kernels taken by themselves is not a good indication
of their weights in the optimized combination. For example in the plant experiments,
motif kernels are best individually, but BLAST and phylogeny kernels obtain higher
weights. We speculate that correlating information of the kernels is one reason for this:
instead of choosing very similar kernels, MCMKL chooses a mixture of kernels that
provide complementary information. Thus one should include as many diverse forms
of information as possible. However, the weights of the kernels also depend on their
prior scaling (normalization), and more machine learning research is necessary to fully
understand this issue.

In addition to improving the accuracy, MCMKL also helps to understand the trained
classifier. For example, in the plant data, the motif kernels on N-terminal subsequences
(both length 15 and 60) provide the most informative feature spaces. The reason for this
is most likely that they are best suited to detect the chloroplast and mitochondria tran-
sit peptides which are known to be in the N-terminal. For bacteria, which do not have
organelles and corresponding signal peptides, the composition of the entire protein is
more useful; probably because it conveys properties like hydrophobicity and charge.
However, the BLAST kernels, which can pick up protein structure via remote homol-
ogy, are assigned even higher weights. For the bacterial datasets, the BLAST kernels
obtain more weight and perform better individually than the phylogenetic kernels. Phy-
logenetic profiles have only been shown to work well with organellar proteins [23], and
the evidence in Figures 3(c) and 3(d) shows that they can help (slightly) for eukaryotes.

Since signal peptides are usually longer than 5 amino acids, our motifs may not
capture all the information. However, one would expect that BLAST scores and phylo-
genetic profiles capture this information. This is reflected by the high weight given to
these kernels (Figure 3). Note however that the localization signal may be distributed
across the amino acid sequence, and only brought together by protein folding – the so
called signal patches. If each component of the signal patches is relatively short, then
this can be captured by our motif kernels.

While MKL did successfully identify relevant kernels (e.g., motif patterns), in this
work we did not narrow it down to the specific features (i.e., the motifs). A promis-
ing goal for future work is to determine which particular motifs are most important;
this can be modeled as an MKL task (cf. [15]). The idea of this approach is to repre-
sent the kernel by a sum of subkernels and to learn a weight (importance) for each of
them. However, it seems that the imposed sparsity of the solution, while useful on the
level of one kernel for each motif pattern, can be harmful at finer resolutions [15], and
alternative approaches are more successful [24].
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6 Summary and Outlook

We propose a general family of histogram-based motif kernels for amino acid se-
quences. We further propose to optimize over sets of kernels using a modern multiclass
multiple kernel learning method, MCMKL [9]. We demonstrate that this approach out-
performs the current state of the art in protein subcellular localization on four datasets.
This high accuracy is already achieved with only using information from the amino acid
sequence, while our method offers a principled way of integrating other data types. A
promising example would be information mined from texts like paper abstracts [25].
Further, by selecting and weighting kernels, MCMKL yields interpretable results and
may aid in getting insight into biological mechanisms.

Finally, the MCMKL framework [9] is very general and could be beneficial for a
variety of (multiclass) bioinformatics prediction problems. For example, in this work
we have only considered the case of singly located proteins, but in general proteins
may exist in several possible locations in the cell. MCMKL does allow learning with
multiple classes for each data point (each label y would be the corresponding subset of
classes), and it will be interesting to see its performance on multiply located proteins.
Application to more different prediction tasks is facilitated by the large and increas-
ing set of existing sequence and structure kernels. MCMKL also allows to guide the
learning process with different types of prior knowledge, including the relationships of
classes to each other (by a kernel on the classes, c.f. [9]). These exciting opportunities
remain to be explored.
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