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ABSTRACT

Motivation: Despite many years of research on how to properly align

sequences in the presence of sequencing errors, alternative splicing

and micro-exons, the correct alignment of mRNA sequences to

genomic DNA is still a challenging task.

Results: We present a novel approach based on large margin

learning that combines accurate splice site predictions with common

sequence alignment techniques. By solving a convex optimization

problem, our algorithm—called PALMA—tunes the parameters of

the model such that true alignments score higher than other

alignments. We study the accuracy of alignments of mRNAs

containing artificially generated micro-exons to genomic DNA. In a

carefully designed experiment, we show that our algorithm accu-

rately identifies the intron boundaries as well as boundaries of the

optimal local alignment. It outperforms all other methods: for 5702

artificially shortened EST sequences from Caenorhabditis elegans

and human, it correctly identifies the intron boundaries in all except

two cases. The best other method is a recently proposed method

called exalin which misaligns 37 of the sequences. Our method also

demonstrates robustness to mutations, insertions and deletions,

retaining accuracy even at high noise levels.

Availability: Datasets for training, evaluation and testing, additional

results and a stand-alone alignment tool implemented in Cþþ and

python are available at http://www.fml.mpg.de/raetsch/projects/

palma

Contact: Gunnar.Raetsch@tuebingen.mpg.de

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Many genomes have been sequenced recently. This is only a

first step to understand what the genome actually encodes.

Fortunately, most of them also come with rather large amounts

of expressed sequence tags (ESTs; sequenced parts of mRNA),

which help to accurately recognize genes and to identify the

exon/intron boundaries as well as alternative splice forms

(Zhang and Gish, 2006, and references therein).
Many methods for aligning ESTs to genomic DNA have

been proposed, including approaches based on blast (Altschul

et al., 1990, spliced alignments (Gelfand et al., 1996), sim4

(Florea et al., 1998), GeneSeqer (Usuka et al., 2000), Spidey

(Wheelan, 2001), blat (Kent, 2002), an approach to find

additional micro-exons (Volfovsky et al., 2003 and most

recently exalin (Zhang and Gish, 2006). The identification of

exon/intron boundaries is important for finding the correct

alignment. Therefore, most approaches try to find an alignment

that prefers splice site consensus signals at the ends of the

identified introns (usually GT/AG, considerably less often

GC/AG and in some organisms also AT/AC) that help to

accurately identify these boundaries. This is done by employing

either dynamic programming or sophisticated heuristics.

Zhang and Gish (2006) used an information theoretic

approach to combine the two types of information available

during alignment: the sequence similarity and splice site

predictions. Given this model, dynamic programming is used

to compute the maximum-log likelihood alignment. Our

algorithm, called PALMA, is based on similar ideas as

exalin. The main differences are (a) the modeling of splice

sites using support vector machines (SVMS) instead of the

commonly used position specific scoring matrices (PSSMs)

(Berg and von Hippel, 1987; Stormo, 1988, (b) the inclusion of

an intron length model and (c) a novel way of combining of the

different types of information using a large margin based

approach. In Rätsch et al. (2006b) we previously considered a

global alignment algorithm. In this work, we consider local

alignments which is better suited for mRNA to genome

alignments.
Our approach does not include any probabilistic models and

hence does not return probabilities for a particular alignment.

It is, however, able to very accurately and robustly align

sequences as will be seen in the experimental section, where we

consider the problem of aligning modified EST sequences to

genomic DNA (Caenorhabditis elegans and human) using the

most difficult setup: we generated artificially shortened internal

exons (3–50 nt) and added small to large amounts of noise in

the mRNA sequences. We show that our method very

accurately aligns the sequences while other methods fail as
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soon as the exons become too short or the amount of noise
too large.

2 METHOD

The idea of our algorithm is to compute an alignment by
dynamic programming that uses a scoring function. We tune

the parameters of the scoring functions such that the true

alignment does not only achieve a large score (to be ‘most
likely’), but also that all other alignments score considerably

lower than the true alignment (to obtain a ‘large margin
between the alignments’). Similar ideas are used in other large

margin algorithms such as SVMs (Müller et al., 2001; Vapnik

1995) and Boosting (Freund and Schapire, 1997; Meir and
Rätsch, 2003). The resulting scoring function can then be

maximized using dynamic programming in order to obtain the
optimal alignment. Our method consists of three independent

parts: the splice site prediction model, the dynamic program-

ming algorithm and the optimization of the scoring function.
We describe them in the following sections.

Training the splice site model and also the large margin
combination requires separate sequence data sets. For the splice

site model, we used genes that were EST confirmed but without
full length cDNA support (Set 1). We consider a random subset

of 40% of all cDNA confirmed genes without evidence for

alternative splicing for training the large margin combination
(Set 2). The remaining 20 and 40% were used for hyper-

parameter tuning (Set 3) and final evaluation (Set 4),
respectively.

2.1 Related work

Two methods based on a similar idea have been independently

proposed in Joachims et al. (2005) as well as Kececioglu and

Kim (2006). Joachims et al. (2005) propose an algorithm related
to SVMs similar in spirit to our approach that can learn

parameters for protein sequence alignments. Kececioglu and
Kim (2006) present an algorithm (based on the method from

Gusfield et al., 1994) that can simultaneously learn hundreds of

parameters. Their approach called the ‘unique-optimal align-
ment’ is equivalent to what is known as the ‘hard margin’

approach in SVM literature; where the true alignment is

constrained to score better than all other possible alignments.
In contrast, the ‘‘soft margin’’ approach in Joachims et al.

(2005) allows the true alignment to score worse than others but
it penalizes the occurrence of such events. The ‘near-optimal

alignment’ approach in Kececioglu and Kim (2006), which

attempts to allow suboptimal alignments in the training set,
does not impose the concept of a margin at all.

Our optimization approach is very similar to that in
Joachims et al. (2005), as we use the ‘soft margin’ concept. In

addition, unlike both previous approaches which were applied
to protein sequence alignment, we explicitly model introns and

splice sites. Furthermore, we explicitly regularize our para-

meters in an for the model appropriate manner, while
kececioglu and Kim (2006) do not regularize at all, and

Joachims et al. (2005) performs standard SVM L2-norm
regularization. In essence, we utilize knowledge of the problem,

i.e. mRNA to DNA alignments, to determine a better

alignment model.

2.2 Splice site predictions

From the set of EST sequences (Set 1) we extracted sequences

of confirmed donor (intron start) and acceptor (intron end)

splice sites (see Appendix for details). For acceptor splice sites,

we used a window of 80 bp upstream to 60 bp downstream of

the site (on the DNA). For donor sites, we used 60 bp upstream

and 80 bp downstream. Also from these training sequences we

extracted non-splice sites that are within an exon or intron of

the sequence and have AG (acceptor) or GT/ GC (donor)

consensus. In order to recognize acceptor and donor splice
sites, we trained two SVM classifiers (Vapnik, 1995) with soft-

margin using the so-called ‘weighted degree’ kernel (Rätsch

et al., 2006a, Sonnenburg et al., 2002, 2007). The kernel

computes the similarity between two sequences s and s0 by

considering substrings occurring in both strings up to length d

and their position. The kernel can be computed by:

kðs, s0Þ ¼
Xd
j¼1

vj
XN�j

i¼1

Iðs½i, iþj� ¼ s0½i, iþj�Þ, ð1Þ

where N¼ 140 is the length of the sequence and s½a, b� denotes

the substring of s from position a to (excluding) b. The function

I is the indicator function, IðtrueÞ ¼ 1, IðfalseÞ ¼ 0 and the

weights vj :¼ d� jþ 1. We used a normalization of the kernel
~kðs, s0Þ ¼ kðs, s0Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðs, sÞkðs0, s0Þ

p
and d¼ 22 for the recognition

of splice sites. Additionally, the regularization parameter of the
SVM was set to be C¼ 2 and C¼ 3 for acceptor and donor

sites, respectively. All parameters (including the window size,

regularization parameters, etc.) have been tuned on data set

2 (cf. Rätsch et al., 2005).
Given a DNA sequence as target of an alignment we can now

use the two SVMs to compute scores for each position with

corresponding consensus1 for being a splice acceptor or donor

site, respectively. We consider the genomes of C.elegans and

humans. U12 splicing in human is extremely rare and in

C.elegans not present at all. We therefore do not consider

AT/AC splice sites for our splice site model.

2.3 Smith–Waterman alignments with intron model

The classical deterministic and exact alignment algorithm is the
Smith–Waterman algorithm and is based on dynamic program-

ming. Its running time is Oðm � nÞ, where m is the length of the

EST sequence SE and n is the length of the DNA sequence SD.

It builds up a m � n matrix and hence has the same space

complexity.
The main idea of the algorithm is to compute a

local alignment by determining the maximum over all align-

ments of all prefixes SEð1 : iÞ :¼ ðSEð1Þ, . . . ,SEðiÞÞ and

SDð1 : jÞ :¼ ðSDð1Þ, . . . ,SDðjÞÞ of the two sequences SE and SD,

while allowing for unaligned starts of the sequences (details

below). An alignment is given by a sequence of pairs ðar, brÞ,

r ¼ 1, . . . ,R, where R � mþ n depends on the alignment and

ar, br 2 � :¼ fA, C, G, T, N, �g. A pair consists either of the

two corresponding letters of the two sequences or a single letter

in one sequence paired with a gap in the other sequence.

The alignment is scored using a substitution matrix M, which

1AG for acceotor sites and GT or GC for donor sites.

PALMA: mRNA to genome alignments

1893



we interpret as a function M : ��� ! R. Then the score for

the alignment A ¼ fðar, brÞgr is simply
P

r Mðar, brÞ.
We define Vði2, j2Þ to be the score of the best alignment of

prefixes SEði1 : i2Þ and SDðj1 : j2Þ for the best choice of starting

positions i1 and j1 on sequences E and D, respectively. The best

local alignment can be obtained by finding the maximal entry in

the matrix V determining i2 and j2 as the ends of the alignment.

The matrix V can be computed using the following recurrence

formula (for all i ¼ 1, . . . ,m and j ¼ 1, . . . , n):

Vði, jÞ ¼ max

0

Vði� 1, j� 1Þ þMðSEðiÞ,SDðjÞÞ

Vði� 1, jÞ þMðSEðiÞ,
0�0Þ

Vði, j� 1Þ þMð
0
�0,SDðjÞÞ

8>>><
>>>:

ð2Þ

The recurrence is initialized with Vð0, 0Þ :¼ 0, Vði, 0Þ :¼ 0 and

Vð0, jÞ :¼ 0 for all i ¼ 1 . . .m and j ¼ 1 . . . n. There are four

possibilities:

(1) SEð1 : iÞ and SDð1 : jÞ are unaligned.

(2) SE(i) and SD(j) are aligned to each other (possibly a

mismatch).

(3) SE(i) is aligned to a gap in the DNA sequence.

(4) SD(j) is aligned to a gap in the EST sequence.

In the original setting there are only these four possibilities

and one can straightforwardly fill the matrix from left to right

and top to bottom to finally compute the maximum over all

elements in V. The optimal alignment can then be obtained by

backtracking (Durbin et al., 1998).
The Smith–Waterman algorithm only aligns the single bases

of two sequences and does not distinguish between exons and

introns�it essentially treats everything as exons. We therefore

propose to extend the Smith–Waterman algorithm to better

model introns: we allow an additional ‘intron transition’ that is

separately scored based on its length and the scores of splice

sites at its ends. We denote by fIði1, i2Þ the intron scoring

function for an intron starting at i1 and ending at i2. The intron

scoring function fIði1, i2Þ is computed based on the intron length

i2 � i1, the donor SVM output gdonði1Þ for position i1 and the

acceptor SVM output gaccði2Þ for position i2. During learning

we determine three functions f‘, facc and fdon : R ! R to

combine these three values:

fIði1, i2Þ ¼ f‘ði2 � i1Þ þ fdonðgdonði1ÞÞ þ faccðgaccði2ÞÞ: ð3Þ

When there is no donor consensus at position i1, then we

define fdonðgdonði1ÞÞ :¼ �1 (similarly for faccðgaccði2ÞÞ). Given

the intron scoring function fI we can now restate the recurrence

formula (for all i ¼ 1, . . . ,m and j ¼ 1, . . . , n):

Vði, jÞ ¼ max

0

Vði� 1, j� 1Þ þMðSEðiÞ,SDðjÞÞ

Vði� 1, jÞ þMðSEðiÞ,
0�0Þ

Vði, j� 1Þ þMð
0
�0,SDðjÞÞ

max
j�Lmax�k�j�1

ðVði, kÞ þ fIðk, jÞÞ

8>>>>>>><
>>>>>>>:

ð4Þ

where, we consider the additional possibility of an intron of

maximal length Lmax starting at position k and ending at j.

Please note that the above recurrence formula is considerably

more computationally expensive than the previous one: every

step involves finding the optimal intron start (OðLmaxÞ), leading

to the complexity of the dynamic programming algorithm of

Oðm � n � LmaxÞ. However, one only needs to consider those

positions where the intron start and end exhibit the splice

consensus sites and the splice site predictor scores are

sufficiently large. Furthermore, if the intron length score only

depends linearly on its length for introns longer than, say, Llin,

then the computational complexity can be reduced to

Oðm � n � LlinÞ. Additional strategies for speeding up such

algorithms and to reduce the amount of memory are discussed

in Zhang and Gish (2006).
For completeness, we need to extend our notation for

alignments with introns. We use again alignment pairs

A ¼ fðar, brÞgr, but extend the alphabet for ar to � [ fþg

(‘intron sequence missing’) and for br to � [ f�g (‘‘intron

sequence’’). Note that br should only contain strings of length

greater than one if ar ¼
0þ0. Then the score fðAÞ for an

alignment A with intron is computed as before, i.e.P
r Mðar, brÞ, except when ar ¼ þ: in this case the intron score

function fIð�, �Þ is used to score the corresponding intron.

2.4 Large margin combination

In the previous section, we assumed that the functions facc, fdon
and f‘ as well as the substitution matrix M were given. We now

describe an algorithm to determine these parameters based on

the training set of sequences and their true alignments.
Note that our proposed algorithm is two-layered: first one

learns the splice site model and then how to combine the

different pieces of information. In principle these two steps can

be combined into one. Then the 1D functions f‘, facc and fdon
can be replaced with linear combinations of kernel elements as

similarly done in Altun et al. (2003). However, this makes

training considerably slower and is not expected to improve the

results in our case.
Since the three functions are 1D, it suffices to use a simple

piecewise linear model: let s be the number of supporting points

xi (satisfying xi < xiþ1) and yi their values, then the piecewise

linear function is defined by

fðxÞ ¼

y1 x � x1
yiðxiþ1�xÞþyiþ1ðx�xiÞ

xiþ1�xi
xi � x � xiþ1

ys x � xs

8<
: : ð5Þ

After having appropriately chosen supporting points on the

x-axis we only need to optimize the corresponding y-values.

For facc and fdon, we use 30 supporting points uniformly

sampled between �5 and þ5 (our SVM outputs are typically

not larger). For f‘, we use 30 log-uniformly sampled supporting

points between 30 and 1000 nt. Given the three functions and

the substitution matrix, the alignment scoring function fðAÞ is

fully specified. Moreover, for a given alignment A, it can be

verified that fðAÞ is linear in all parameters that we denote by h,

i.e. in the values of the substitution matrix and the y-values of

the three piecewise linear functions, h :¼ ðhacc, hdon, h‘, hMÞ.

2.4.1 Optimization For training we are given a set of N true
alignments Aþ

i , i ¼ 1, . . . ,N. The goal is to find the parameters

U.Schulze et al.
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h of the alignment scoring function f such that the difference of

scores f�ðA
þ
i Þ � f�ðA

�
Þ is large for all wrong alignments

A
�
6¼ A

þ
i . This can be done by solving the following convex

optimization problem:

min
n�0, h

1
N

PN
i¼1

�i þ PðhÞ

s:t: f�ðA
þ
i Þ � f�ðA

�
Þ � 1� �i 8i and A

�
6¼ A

þ
i :

ð6Þ

Here, we introduced so-called slack-variables �i to implement

a soft margin (Cortes and Vapnik, 1995), i.e. to allow for a few

misaligned examples. Additionally, we use a regularization term

to avoid over-fitting (see Section 6.4.2 for details). The above

optimization problem has exponentially many constraints and

cannot be easily solved directly. Instead one adopts a column

generation technique (cf. Hettich and Kortanek, 1993) and

references therein) and for every true alignment one maintains a

set of wrong alignments A�
i, j 6¼ A

þ
i , for all j. Initially this set is

empty and elements are added iteratively. Given a set of wrong

alignments one can now determine the intermediate optimal

parameters h by solving:

min
n�0, h

1
N

PN
i¼1

�i þ PðhÞ

s:t: f�ðA
þ
i Þ � f�ðA

�
i, jÞ � 1� �i 8i, j:

ð7Þ

Using these parameters. we can compute the best and the

second best alignment, of which one must be wrong. We use the

wrong one with the highest score for generating a new

constraint in (7), i.e. we add it to the set of wrong alignments.

This procedure is iterated and provably converges to the

solution of (6) in a finite number of steps. In our application

usually not more than 30 iterations are needed until all

constraints are satisfied.

2.4.2 Regularization In empirical inference, it is common to

regularize the parameters in order not to over-fit. We

implement this by adding a regularization term PðhÞ in (6).

Recall that the parameter vector consists of four parts, and we

define the regularization term as follows:

PðhÞ ¼C
Xn�1

i¼1

ð�acc, iþ1 � �acc, iÞ
2

 

þ
Xn�1

i¼1

ð�don, iþ1 � �don, iÞ
2

þ
Xn�1

i¼1

ð�‘, iþ1 � �‘, iÞ
2
þ
X
a, b

Mða, bÞ2

!
:

It implements the idea that the piecewise-linear functions

should be smooth and the values in the substitution matrix

small. The constant C is the regularization constant found by

model selection and determines the trade-off between the

number of training errors and the complexity of the model.

2.5 Whole genome alignments

Since the amount of computation and memory increases

linearly with the length of the genomic sequence, it is not

feasible to directly apply PALMA to align mRNAs to genomic

sequences. Exalin has the same problems and Zhang and Gish

(2006) suggested to use blast to detect high-scoring pairs (HSPs)

that can be used to significantly speedup the search. We follow

a similar idea and use blast to identify HSPs with an E-value4
10�3. In order to get complete alignments, we appropriately

extend the HSPs’ terminal ends and then apply PALMA to

align this region with the query. Finally, the alignment with the

greatest PALMA alignment score is chosen (among the several

alignments generated for each HSP).

Both versions of our software are available for download at

http://www.fml.mpg.de/raetsch/projects/palma. The software

comes as a python package including scripts to align mRNA

to DNA sequences or to perform a whole genome search.

As output the tool provides the extended BLAT-like format or

the BED format for alignments against genomes.

The tool aligned all 4358 cDNA sequences (4.7 Mb),

with 14 058 blast hits against the C.elegans genome (version

WS150, 100Mba) in �5 and 9h using the model without and

with intron length information, respectively (on a 2.4 GHz

Athlon AMD64). This time included the whole genome

prediction of splice sites took (�30 min), aligning with blast

(�30 min) and processing the blast hits (1 or 2 s per hit on

average).

3 RESULTS AND DISCUSSION

Most alignment algorithms work very well for aligning mRNA

sequences against genomic DNA when query and target

perfectly match and the matching blocks are long enough. In

our experimental study we are interested in the most difficult

cases, where most algorithms start to fail. If an algorithm works

in such case we expect that it will also return correct alignments

for easier cases. We consider two organisms, C.elegans and

human, which have quite different characteristics. Introns in

C.elegans are rather short (often only 50 nt) and the splice sites

are well conserved and relatively easy to recognize (data not

shown). An intron on human DNA can span several hundred

thousands of nucleotides and the splice sites are harder to

recognize. Correct alignments to the human genome are

considerably more challenging.

3.1 Experimental setup

We evaluate our proposed method, PALMA, and other

methods including exalin, sim4 & blat. We consider the

alignment of mRNA sequence fragments containing three

exons, where we artificially shortened the middle exon (final

length of 3–50 nt; see Fig. 3 and Appendix for details) in order

to make the problem harder.2 Artificially generating the data

has the benefit of knowing exactly what the correct alignment

has to be. Additionally, we add varying amounts of noise

(p ¼ 0 , 1 , 5 and 10% of random mutations, deletions or

insertions) to the query sequence. Finally, we replace a part

of the DNA or mRNA sequence at its terminal ends with

random sequence leading to a shortened correct alignment.

This allows us to determine how well the methods perform in

finding the correct local alignment including its boundaries.

2We excluded exons of length two since exalin was not able to predict
them.
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During evaluation we count how often the methods correctly

identify the alignments. The evaluation is done on a separate

test set which was not used during training of our method

(set 4, cf. Appendix). This test set consists of 4358 sequences for

C.elegans and 1344 sequences for human, giving a total of 5702

alignments in our evaluation.
The model selection for the splice site predictors have been

performed on separate validation sets (Set 2). Model selection

of regularization parameter C in our method (cf. Section 2.4.2)

was done by simple validation on a separate validation set

(Set 3). While the method was trained on noise-free data, we

applied it to the noisy versions during validation since

otherwise the validation error rate was very close to zero,

almost independently of the choice of C. We determined

C¼ 0.001 as optimal regularization constant. This choice

performs well over a wide range of noise levels. However, for

high noise levels there are better choices (see Supplementary

Matrial on the project web site). Hence, if the noise level is

known in advance the one should use the corresponding

optimal value for C.

3.2 PALMA versus other alignment tools

Figure 4 shows the alignment error rates for different methods

on the sequences from C.elegans and human. Here we count an

alignment as correct, if all intron boundaries are predicted

correctly. We can observe that there are drastic differences

between the methods. Almost all methods perform reasonably

well when the query perfectly matches the target—with the

exception of sim4 having problems to correctly align a relatively

large part of the sequences. For blat and sim4 the error

rates drastically increase when the query sequence is noisy.

For blat this behavior is expected as the matching heuristic

requires long blocks of identity. Only exalin and PALMA have

low error rates for relatively high noise levels. When deleting,

inserting or mutating up to 10% of the query sequence,

PALMA still identifies 97:8% of all introns correctly, while the

other methods achieve less than 90% accuracy.
We have also considered error rates for the whole alignment

(not shown, but displayed on the Supplementary Material).

Here we counted an alignment as correct, if the intron

boundaries as well as the 50 and 30 ends are exactly correct.

Not entirely surprising, we observe that it is increasingly

difficult to identify the correct ends of the alignment if the

amount of noise is increased. While blat, exalin and PALMA

perform about equally good for low noise levels, sim4 often

fails to identify the correct start or end of the alignment.3

Finally, Figure 5 illustrates one of the main reasons for the

rather poor performance of the other methods. Shown is the

accuracy (intron boundaries) of aligning exon triples with

middle exons of varying length (3–5 nt, 6–10 nt, 11–15 nt, 16–20

nt, 20–25 nt). We can observe that sim4 is most affected by the

shortness of the exons, closely followed by blat. For very short

exons (�5 nt) exalin produces wrong alignments in a

significant number of cases. PALMA’s performance is

Fig. 1. PALMA generalizes the Smith–Waterman algorithm by

including an intron model taking splice site predictions as well as

intron length information into account. Publicly available sequence

data of high quality is used to train PALMA. Confirmed donor and

acceptor sites are used to train a SVM-based splice site predictor. The

information is then used to optimize the parameters used for alignment.

Fig. 2. A graphical representation of (4) showing the possible

transitions to cell V(i, j) in the alignment matrix. There is the

additional possibility to start or finish the alignment at any position

(‘local alignment’).

Fig. 3. For our simulation study we considered exon triples, where we

artificially shorted the second exon to 3–50 nt. Most alignment

algorithms fail to reliably identify such short exons.

3We observed that the alignments are upto 15 nt too short on each end.
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essentially unaffected by the length of the exon (at least in the

noise-free case): out of the 5702 sequences (C.elegans and

human), PALMA only failed on two sequences to produce the

correct alignment.

3.3 Splice site scoring and intron length modeling affect

performance

We investigate the different features used by PALMA and how

they contribute to the improvement of the alignment accuracy.

The same data was used as before (C.elegans only). The error

rates for full PALMA, PALMA with splice site scores disabled,

PALMA with the intron length model disabled and with both

disabled are shown in Figure 6. For comparison we also show

the results of exalin.
The higher the noise level, the less information is actually

available in the query mRNA sequence. Hence, the splice

sites help more to identify the introns, as can also be observed

in Figure 6. But also in the low noise case, the splice site

predictions also help to accurately identify very short
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Fig. 4. Comparison of different methods for aligning mRNAs to genomic DNA: C.elegans on the left and human on the right. We considered the

particularly difficult task of aligning exon triples with short middle exons (3–50 nt) in the presence of different amounts of noise. An alignment is

declared as correct if the intron boundaries, i.e. all splice sites, are correct. PALMA has significantly lower error rates than all other methods

throughout all noise levels (exception: human with noise levels; see main text for details).
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Fig. 5. Comparison of different methods for aligning mRNAs to genomic DNA: C.elegans on the left and human on the right. The error rates at

different lengths of the middle exon are shown for the data with no noise. For C.elegans all methods perform almost perfectly for exons longer than

20nt. However, for human, there is some residual error for blat and sim4 even for longer exons. For both organisms, the different algorithms begin to

fail as the middle exons become shorter, except for PALMA.
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exons that may be matched to several positions in the intronic

regions (cf. Fig 6). If splice site information not available, then

the error rate increases quite drastically (large effects for

noise �5%).
If the splice site information is available, the intron length

only contributes little to reducing the error rate. For higher

noise levels (�2%) we even find that the intron length

information can be harmful, which can be explained that

PALMA was trained on noise-free sequences. Hence, it might

not have learned good parameters for balancing the matches

with the intron length for the noisy case. Furthermore, taking

the intron length into account is computationally rather

expensive, i.e. Oðm � n � LlinÞ instead of Oðm � nÞ. In practice,

we therefore suggest to use PALMA with splice site predictions,
but without intron length model, leading to only a small loss of

accuracy compared to the best version.
Finally, the question remains why exalin is performing worse

than PALMA without intron and splice site model, which we

found very surprising. It turns out that exalin often has

problems aligning the terminal ends of the sequences (see Figs 5

and 4 and tables in Supplementary Material). Moreover, it
often fails to identify very short exons (length 2–6 nt.), in

particular it does not predict exons of length shorter than three.

Finally, we noticed that for higher noise levels in a few percent

of the cases exalin produces alignments where the intron

boundaries are shifted by 2 nt, even when there is no consensus.
All these issues lead to a considerably worse performance of

exalin compared to PALMA.

3.4 Illustration of learning result

Figures 7 and 8 show the optimized parameters determined by

our algorithm. For the piece-wise linear functions for acceptor
and donor scores in Figure 8, we obtain rather smooth sigmoid-

shaped functions (‘differences between very large or very small

score values do not matter’) except in one case (C.elegans

donors) where we observe an additional plateau for medium

splice scores. The same figure displays the piece-wise linear
function for scoring intron lengths. We observe that the very

short and very long introns are penalized. Interestingly, the

maximum does not correspond to the most frequent exon

length (50 nt in C.elegans).
The optimized substitution matrices (Fig. 7) are essentially

diagonal, which is not surprising as there was no preference for

substitutions in our data. Comparing the acceptor and donor
scores in Figure 8 with the substitution matrices we observe

that the difference between an intron with weak or strong splice

sites is worth about two matchesor a single nucleotide insertion

or deletion. Furthermore, since we use the Smith–Waterman

algorithm, the terminal ends are determined by the balance
between scores for insertions or deletions and matching

positions as well as between mismatches and matches.
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Whenever, the score at the ends are below 0, the alignment is

shortened. For both organisms this allows for about one gap

per 4 matches.

4 CONCLUSION

We have proposed a new alignment algorithm that computes

the optimal alignment of mRNA sequences to genomic DNA.

It exploits very accurate kernel-based splice site predictions

approaches and makes use of an intron length model. For

combining the different pieces of information, we have
developed a novel optimization method that simultaneously

optimizes parameters such as the substitution matrix, intron

length penalty function, etc. The algorithm is based on

maximizing the margin between true and wrong alignment by

solving a convex optimization problem. In a thorough

simulation study on aligning sequences from C.elegans and

human with very short exons and varying amounts of noise we
have shown that our method achieves significantly lower error

rates than other methods. This indicates that the proposed

method would be more effective than current approaches for

discovering micro-exons, i.e. exons between 3–25 nt in length.

This is especially true in the presence of sequencing errors or

mutations which may render current approaches inaccurate. In

addition, by combining it with other methods such as blast we
can reduce the computational cost in order to apply our

method for alignments of ESTs to whole genomes.
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scoring function f‘.

PALMA: mRNA to genome alignments

1899

http://dx.doi.org/10.1371/


Usuka,J. et al. (2000) Optimal spliced alignment of homologous cDNA to a

genomic DNA template. Bioinformatics, 16, 203–211.

Vapnik,V. (1995) The Nature of Statistical Learning Theory. Springer Verlag,

New York.

Volfovsky,N. et al. (2003) Computational discovery of internal micro-exons.

Genome Res., 13, 1216–1221.

Wheelan,S.J, (2001) Spidey: a tool for mRNA-to-genomic alignments. Genome

Res., 11, 1952–1957.

Zhang,M. and Gish,W. (2006) Improved spliced alignment from an information

theoretic approach. Bioinformatics, 22, 13–20.

APPENDIX

Processing of sequence databases

Sequences from C.elegans: We collected all known C.elegans
ESTs from Wormbase (Harris et al., 2004) (release WS120; 236,
893 sequences) and dbEST (Boguski and Tolstoshev, 1993) (as

of 22 February, 2004; 231 096 sequences). Using blat (Kent,
2002) we aligned them against the genomic DNA (release

WS120). The alignment was used to confirm exons and introns.
We refined the alignment by correcting typical sequencing

errors, for instance, by removing minor insertions and
deletions. If an intron did not exhibit the consensus GT/AG
or GC/AG at the 50 and 30 ends, then we tried to achieve this by

shifting the boundaries up to 2 base pairs (bp). If this still did
not lead to the consensus, we split the sequence into two parts

and considered each subsequence separately. In a next step we
merged consistent alignments, if they shared at least one
complete exon or intron. This led to a set of 124 442 unique

EST-based sequences.
We repeated the above procedure with all known cDNAs

from Wormbase (release WS120; 4855 sequences). These
sequences only contain the coding part of the mRNA. We
used their ends as annotation for start and stop codons.

We clustered the sequences in order to obtain independent
training, validation and test sets. In the beginning each of the

above EST and cDNA sequences were in a separate cluster. We
iteratively joined clusters, if any two sequences from distinct
clusters match to the same genomic location (This includes

many forms of alternative splicing). We obtained 21 086
clusters, while 4072 clusters contained at least one cDNA.
For Set 1 we chose all clusters not containing a cDNA

(17 215), for Set 2 we chose 40% of the clusters containing at

least one cDNA (1536). For Set 3 we used 20% of clusters with
cDNA (775). The remaining 40% of clusters with at least one
cDNA (1560) were used as Set 4. Sets 2–4 were filtered
to remove confirmed alternative splice forms. This left

1177 cDNA sequences for testing in Set 4 with an average
of 4.8 exons per gene and 2comma;313bp from the 50 to the
30 end.

Sequences from human We followed the same protocol using

the version hg17 of the human genome and sequences from
dbEST (as of 14 July 2005) and cDNAs from the RIKEN and
MIPS cDNA collections. We obtained four sets as before. The
first set was used to train the splice site recognizers (29 748

clusters), the second set (1558 clusters) was use for computing
the alignment parameters, the third set (780 clusters) for
model selection and the fourth set (1560 clusters) for final

evaluation. As before Sets 2–4 were filtered to remove
confirmed alternative splice forms leaving considerably few
sequences as for C.elegans, which additionally often where

single exon genes.

Artificial micro-exon dataset Based on Sets 2–4 for C.elegans
and human described in the last section we created sets of

consecutive exon triples from the confirmed transcripts in these
sets. This lead to 4604, 2257 and 4358 triples for C.elegans as
well as 1277, 669 and 1344 for human. In a first processing step,

we shortened the middle exons to a random length between 2
and 50 nt (uniformly distributed). To do so, we removed the
correct number of nucleotides from the center of the middle

exon—from the query as well as the DNA. This leaves the
splice sites mostly functional. Since exalin was not able to detect
exons shorter than 3 nt, we exclude those from the further

analysis. In a second step we added varying amounts of noise.
For a given noise level p and a query sequence of length L,
we first replaced p � L=3 positions with a random letter
(� ¼ fA,C,G,T,Ng). Then we deleted the same number of

non-overlapping positions in the sequence and added the same
number of random nucleotides at random positions. We used
p ¼ 0 , 1 , 5 and 10%. Finally, we randomly removed or

replaced up to 15 nt at the terminal ends. Replacement was
done using a random string making sure that the first replaced
letter is a mismatch.
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