
Combining active learning suggestions

Alasdair Tran1,2, Cheng Soon Ong1,3 and Christian Wolf 4,5

1Research School of Computer Science, Australian National University, Canberra, ACT, Australia
2 Data to Decisions Cooperative Research Centre, Adelaide, SA, Australia
3 Machine Learning Research Group, Data61, CSIRO, Canberra, ACT, Australia
4 Research School of Astronomy and Astrophysics, Australian National University, Canberra,

ACT, Australia
5 ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), Sydney, NSW, Australia

ABSTRACT
We study the problem of combining active learning suggestions to identify

informative training examples by empirically comparing methods on benchmark

datasets. Many active learning heuristics for classification problems have been

proposed to help us pick which instance to annotate next. But what is the optimal

heuristic for a particular source of data? Motivated by the success of methods that

combine predictors, we combine active learners with bandit algorithms and rank

aggregation methods. We demonstrate that a combination of active learners

outperforms passive learning in large benchmark datasets and removes the need

to pick a particular active learner a priori. We discuss challenges to finding good

rewards for bandit approaches and show that rank aggregation performs well.

Subjects Data Mining and Machine Learning

Keywords Active learning, Bandit, Rank aggregation, Benchmark, Multiclass classification

INTRODUCTION
Recent advances in sensors and scientific instruments have led to an increasing use of

machine learning techniques to manage the data deluge. Supervised learning has become a

widely used paradigm in many big data applications. This relies on building a training

set of labeled examples, which is time-consuming as it requires manual annotation from

human experts.

The most common approach to producing a training set is passive learning, where

we randomly select an instance from a large pool of unlabeled data to annotate, and we

continue doing this until the training set reaches a certain size or until the classifier

makes sufficiently good predictions. Depending on how the underlying data is distributed,

this process can be quite inefficient. Alternatively we can exploit the current set of labeled

data to identify more informative unlabeled examples to annotate. For instance we can pick

examples near the decision boundary of the classifier, where the class probability estimates

are uncertain (i.e., we are still unsure which class the example belongs to).

Many active learning heuristics have been developed to reduce the labeling bottleneck

without sacrificing the classifier performance. These heuristics actively choose the most

informative examples to be labeled based on the predicted class probabilities. “Overview

of Active Learning” describes two families of algorithms in detail: uncertainty sampling

and version space reduction.

In this paper, we present a survey of how we can combine suggestions from various

active learning heuristics. In supervised learning, combining predictors is a well-studied

How to cite this article Tran et al. (2018), Combining active learning suggestions. PeerJ Comput. Sci. 4:e157; DOI 10.7717/peerj-cs.157

Submitted 5 January 2018
Accepted 14 June 2018
Published 23 July 2018

Corresponding author
Alasdair Tran,

alasdair.tran@anu.edu.au

Academic editor
Sebastian Ventura

Additional Information and
Declarations can be found on
page 31

DOI 10.7717/peerj-cs.157

Copyright
2018 Tran et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.157
mailto:alasdair.�tran@�anu.�edu.�au
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.157
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

problem. Many techniques such as AdaBoost (Freund & Schapire, 1996) (which averages

predictions from a set of models) and decision trees (Breiman et al., 1984) (which

select one model for making predictions in each region of the input space) have been

shown to perform better than just using a single model. Inspired by this success, we

propose to combine active learning suggestions with bandit and rank aggregation

methods in “Combining Suggestions.”

The use of bandit algorithms to combine active learners has been studied before (Baram,

El-Yaniv & Luz, 2004; Hsu & Lin, 2015). Borda count, a simple rank aggregation method,

has been used in the context of multi-task learning for linguistic annotations (Reichart et al.,

2008), where we have one active learner selecting examples to improve the performance of

multiple related tasks (e.g., part-of-speech tagging and name entity recognition). Borda

count has also been used in multi-label learning (Reyes, Morell & Ventura, 2018) to combine

uncertainty information frommultiple labels. As far as we know, other aggregationmethods

have not been explored and our work is the first time that social choice theory is used to

rank and aggregate suggestions from multiple active learners.

This paper makes the following two main contributions:

1. We empirically compare four bandit and three rank aggregation algorithms in the

context of combining active learning heuristics. We apply these algorithms to 11

benchmark datasets from the UCI Machine Learning Repository (Lichman, 2013) and a

large dataset from the Sloan Digital Sky Survey (SDSS) (Alam et al., 2015). The

experimental setup and discussion are described in “Experimental Protocol, Results,

and Discussion.”

2. We propose two metrics for evaluation: the mean posterior balanced accuracy (MPBA)

and the strength of an algorithm. The MPBA extends the metric proposed in Brodersen

et al. (2010) from the binary to the multi-class setting. This is an accuracy measure that

takes class imbalance into account. The strength measure is a variation on the deficiency

measure used in Baram, El-Yaniv & Luz (2004) which evaluates the performance of an

active learner or combiner, relative to passive learning. The main difference between

our measure and that of Baram, El-Yaniv & Luz (2004) is that ours assigns a higher

number for better active learning methods and ensures that it is upper-bounded by 1

for easier comparison across datasets.

OVERVIEW OF ACTIVE LEARNING
In this paper we consider the binary and multiclass classification settings where we would

like to learn a classifier h, which is a function that maps some feature space X � Rd to a

probability distribution over a finite label space Y:
h : X ! pðYÞ (1)

In other words, we require that the classifier produces class probability estimates

for each unlabeled example. For instance, in logistic regression with only two classes,

i.e., Y ¼ f0; 1g, we can model the probability that an object with feature vector x belongs

to the positive class with

Tran et al. (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.157 2/34

http://dx.doi.org/10.7717/peerj-cs.157
https://peerj.com/computer-science/

hðx; θÞ ¼ Pðy ¼ 1 j x; θÞ ¼ 1

1þ e�θTx
(2)

and the optimal weight vector θ is learned in training. We can further consider kernel

logistic regression, where the feature space X is the feature space corresponding to a given

kernel, allowing for non-linear decision functions.

In active learning, we use the class probability estimates from a trained classifier to

estimate a score of informativeness for each unlabeled example. In pool-based active

learning, where we select an object from a pool of unlabeled examples at each time step,

we require that some objects have already been labeled. In practice this normally means

that we label a small random sample at the beginning. These become the labeled training

set LT � X � Y and the rest form the unlabeled set U � X .
Now consider the problem of choosing the next example in U for querying. Labeling

can be a very expensive task, because it requires using expensive equipment or human

experts to manually examine each object. Thus, we want to be smart in choosing the

next example. This motivates us to come up with a rule s(x ; h) that gives each unlabeled

example a score based only on their feature vector x and the current classifier h. Recall

that the classifier produces p(Y), a probability estimate for each class. We use these

probability estimates from the classifier over the unlabeled examples to calculate

the scores:

s : pðYÞ ! R (3)

The value of s(x ; h) indicates the informativeness of example x, where bigger is better.

We would then label the example with the largest value of s(x; h). This will be our active

learning rule r:

rðU; hÞ ¼ argmax
x2U

sðx; hÞ (4)

Algorithm 1 outlines the standard pool-based active learning setting.

Coming up with an optimal rule is itself a difficult problem, but there have been many

attempts to derive good heuristics. Five common ones, which we shall use in our

experiments, are described in “Uncertainty Sampling” and “Version Space Reduction.”

Algorithm 1 The pool-based active learning algorithm.

Input: unlabeled set U, labeled training set ℒT, classifier h(x), and active learner rðU; hÞ.
repeat

Select the most informative candidate x� from U using the active learning rule rðU; hÞ.
Ask the expert to label x�. Call the label y�.

Add the newly labeled example to the training set: LT LT [fðx�; y�Þg.
Remove the newly labeled example from the unlabeled set: U Unfx�g.
Retrain the classifier h(x) using ℒT.

until we have enough training examples.

Tran et al. (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.157 3/34

http://dx.doi.org/10.7717/peerj-cs.157
https://peerj.com/computer-science/

There are also heuristics that involve minimizing the variance or maximizing the

classifier certainty of the model (Schein & Ungar, 2007), but they are computationally

expensive. For example, in the variance minimization heuristic, the score of a candidate

example is the expected reduction in the model variance if that example were in the

training set. To compute this reduction, we first need to give the example each of the

possible labels, add it to the training set, and update the classifier. This is expensive to run

since in each iteration, the classifier needs to be retrained k �U times, where k is the

number of classes and U is the size of the unlabeled pool. There are techniques to speed

this up such as using online training or assigning a score to only a small subset of the

unlabeled pool. Preliminary experiments showed that these heuristics do not perform

as well as the simpler ones (Tran, 2015), so we do not consider them in this paper.

A more comprehensive treatment of these active learning heuristics can be found in

(Settles, 2012).

Uncertainty sampling
Lewis & Gale (1994) introduced uncertainty sampling, where we select the instance whose

class membership the classifier is least certain about. These tend to be points that are near

the decision boundary of the classifier. Perhaps the simplest way to quantify uncertainty is

the least confidence heuristic (Culotta & McCallum, 2005), where we pick the candidate

whose most likely label the classifier is most uncertain about:

rLCðU; hÞ ¼ argmax
x2U

�max
y2Y

pðy j x; hÞ
� �

(5)

where p(y |x; h) is the probability that the object with feature vector x belongs to class y

under classifier h. For consistency, we have flipped the sign of the score function so that

the candidate with the highest score is picked.

A second option is to calculate the entropy (Shannon, 1948), which measures the

amount of information needed to encode a distribution. Intuitively, the closer the class

probabilities of an object are to a uniform distribution, the higher its entropy will be.

This gives us the heuristic of picking the candidate with the highest entropy of the

distribution over the classes:

rHEðU; hÞ ¼ argmax
x2U

�
X
y2Y

pðy j x; hÞ log½pðy j x; hÞ�
()

(6)

As a third option we can pick the candidate with the smallest margin, which is defined as the

difference between the two highest class probabilities (Scheffer, Decomain & Wrobel, 2001):

rSMðU; hÞ ¼ argmax
x2U

� max
y2Y

pðy j x; hÞ � max
z2Ynfy�g

pðz j x; hÞ
� �� �

(7)

where y� ¼ argmaxy2Y pðz j x; hÞ and we again flip the sign of the score function. Since the
sum of all probabilities must be 1, the smaller the margin is, the harder it is to differentiate

between the two most likely labels.

Tran et al. (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.157 4/34

http://dx.doi.org/10.7717/peerj-cs.157
https://peerj.com/computer-science/

An extension to the above three heuristics is to weight the score with the

information density so that we give more importance to instances in regions of

high density:

sIDðU; hÞ ¼ 1

U

XE
k ¼ 1

simðx; xðkÞÞ
 !

sðx; hÞ (8)

where h is the classifier, s(x; h) is the original score function of the instance with feature

vector x, U is the size of the unlabeled pool, and sim(x, x(k)) is the similarity between x

and another instance x(k) using the Gaussian kernel with parameter g:

simðx; xðkÞÞ ¼ expðgjjx � xðkÞjj2Þ (9)

The information density weighting was proposed by Settles & Craven (2008) to discourage

the active learner from picking outliers. Although the class membership of outliers

might be uncertain, knowing their labels would probably not affect the classifier

performance on the data as a whole.

Version space reduction
Instead of focusing on the uncertainty of individual predictions, we could instead try

to constrain the size of the version space, thus allowing the search for the optimal classifier to

be more precise. The version space is defined as the set of all possible classifiers that are

consistent with the current training set. To quantify the size of this space, we can train a

committee of B classifiers, B = {h1, h2, ..., hB}, and measure the disagreement among the

members of the committee about an object’s class membership. Ideally, each member

should be as different from the others as possible but still be in the version space

(Melville & Mooney, 2004). In order to have this diversity, we give each member only a

subset of the training examples. Since there might not be enough training data, we need to

use bootstrapping and select samples with replacement. Hence this method is often called

Query by Bagging (QBB).

One way to measure the level of disagreement is to calculate the margin using the class

probabilities estimated by the committee (Melville & Mooney, 2004):

rQBBMðU; hÞ ¼ argmax
x2U

� max
y2Y

pðy j x;BÞ � max
z2Ynfy�g

pðz j x;BÞ
� �� �

(10)

where

y� ¼ argmax
y2Y

pðz j x;BÞ (11)

pðz j x;BÞ ¼ 1

B

X
b2B

pðy j x; hbÞ (12)

This looks similar to one of the uncertainty sampling heuristics, except now we

use p(y |x; B) instead of p(y |x; h). That is, we first average out the class probabilities

predicted by the members before minimizing the margin. McCallum & Nigam

(1998) offered an alternative disagreement measure which involves picking

Tran et al. (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.157 5/34

http://dx.doi.org/10.7717/peerj-cs.157
https://peerj.com/computer-science/

the candidate with the largest mean Kullback–Leibler (KL) divergence from

the average:

rQBBKLðU; hÞ ¼ argmax
x2U

1

B

XB
b ¼ 1

DKLðpb k pBÞ
()

(13)

where DKL(pb‖pB) is the KL divergence from pB (the probability distribution that is

averaged across the committee B), to pb (the distribution predicted by a member b ∈ B):
DKLðpb k pBÞ ¼

X
y2Y

pðy j x; hbÞ ln
pðy j x; hbÞ
pðy j x;BÞ (14)

For convenience, we summarize the five heuristics discussed above in Table 1.

COMBINING SUGGESTIONS
Out of the five heuristics discussed, which one should we use in practice when we would

like to apply active learning to a particular problem? There have been some attempts in

the literature to do a theoretical analysis of their performance. Proofs are however

scarce, and when there is one available, they normally only work under restrictive

assumptions. For example, Freund et al. (1997) showed that the query by committee

algorithm (a slight variant of our two QBB heuristics) guarantees an exponential decrease

in the prediction error with the training size, but only when there is no noise. In general,

whether any of these heuristics is guaranteed to beat passive learning is still an open

question.

Even though we do not know which one is the best, we can still combine suggestions from

all of the heuristics. This can be thought of as the problem of prediction with expert advice,

where each expert is an active learning heuristic. In this paper we explore two different

approaches: we can either consider the advice of only one expert at each time step (with bandit

algorithms), or we can aggregate the advice of all the experts (with social choice theory).

Combining suggestions with bandit theory
First let us turn our attention to the multi-armed bandit problem in probability theory

(Berry & Fristedt, 1985). The colorful name originates from the situation where a gambler

Table 1 Summary of active learning heuristics used in our experiments.

Abbreviation Heuristic Objective function

CONFIDENCE Least confidence argmax
x2U

�maxy2Y pðyjx; hÞ� �
ENTROPY Highest entropy argmax

x2U

��Py2Y pðyjx; hÞ log½pðyjx; hÞ��
MARGIN Smallest margin argmax

x2U
� maxy2Y pðyjx; hÞ �maxz2Ynfy�g pðzjx; hÞ
� 	� �

QBB-MARGIN Smallest QBB margin argmax
x2U

� maxy2Y pðyjx;BÞ �maxz2Ynfy�g pðzjx;BÞ
� 	� �

QBB-KL Largest QBB KL argmax
x2U

�1
B

PB
b¼1 DKLðpb k pBÞ

�
Note:

Notations: p(y|x; h) is the probability of that an object with feature vector x has label y under classifier h, B is the set of B
classifiers {h1, h2, : : : , hB}, Y is the set of possible labels, y� is the most certain label, U is the set of unlabeled instances,
DKL(p||q) is the Kullback–Leibler divergence of p from q, and pB is the class distribution averaged across classifiers in B.
For consistency, with heuristics that use minimization, we flip the sign of the score so that we can always take the argmax
to get the best candidate.

Tran et al. (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.157 6/34

http://dx.doi.org/10.7717/peerj-cs.157
https://peerj.com/computer-science/

stands in front of a slot machine with R levers. When pulled, each lever gives out a reward

according to some unknown distribution. The goal of the game is to come up with a

strategy that can maximize the gambler’s lifetime rewards. In the context of active

learning, each lever is a heuristic with a different ability to identify the candidate whose

labeling information is most valuable.

The main problem in multi-armed bandits is the trade-off between exploring random

heuristics and exploiting the best heuristic so far. There are many situations in which we

find our previously held beliefs to be completely wrong. By always exploiting, we could

miss out on the best heuristic. On the other hand, if we explore too much, it could take us

a long time to reach the desired accuracy.

Bandit algorithms do not need to know the internal workings of the heuristics, but only

the reward received from using any of them. At each time step, we receive a reward from a

heuristic, and based on the history of all the rewards, the bandit algorithm can decide on

which heuristic to pick next. Formally, we need to learn the function

b : ðJR � ½0; 1�Þn ! JR (15)

where b is the bandit algorithm, the reward is normalized between 0 and 1, Jℛ is the index

set over the set of heuristics ℛ, and n is the time horizon.

What would be an appropriate reward w in this setting? We propose using the

incremental increase in the performance of the test set after the candidate is added to the

training set. This, of course, means that we need to keep a separate labeled test set

around, just for the purpose of computing the rewards. We could, as is common practice

in machine learning, use cross validation or bootstrap on ℒT to estimate the

generalization performance. However for simplicity of presentation we use a separate

test set ℒS.

Figure 1 and Algorithm 2 outline how bandits can be used in pool-based active

learning. The only difference between the bandit algorithms lies in the SELECT function

that selects which heuristic to use, and the UPDATE function that updates the algorithm’s

selection parameters when receiving a new reward.

Train with classifier h Assign scores with s
Select candidate
with highest score

Label candidateAdd to training pool

Select heuristic with b chosen heuristic r

LT

p(Y)

x∗(x∗, y∗)

LS

U

reward w

R

Figure 1 Active learning pipeline with bandit algorithms. We need to collect rewards w from the test

set ℒS in order to decide which heuristic to choose at each time step. This routine is indicated by the red

arrows. Notations: ℛ is the set of heuristics {r1, : : : , rR}, ℒT is the training set, ℒS is the test set, U is the

unlabeled set, and p(Y) is the predicted class probabilities on the unlabeled data U.
Full-size DOI: 10.7717/peerj-cs.157/fig-1

Tran et al. (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.157 7/34

http://dx.doi.org/10.7717/peerj-cs.157/fig-1
http://dx.doi.org/10.7717/peerj-cs.157
https://peerj.com/computer-science/

There have been some attempts to combine active learning suggestions in the literature.

Baram, El-Yaniv & Luz (2004) used the EXP4 multi-armed bandit algorithm to automate

the selection process. They proposed a reward called the classification entropy

maximization, which can be shown to grow at a similar rate to the true accuracy in

binary classification with support vector machines (SVMs). We will not compare our

results directly with those in Baram, El-Yaniv & Luz (2004) since we would like to

evaluate algorithms that can work with both binary and multi-class classification. Our

experiments also use logistic regression which produces probability estimates directly,

rather than SVMs which can only produce unnormalized scores. Hsu & Lin (2015)

studied an improved version of EXP4, called EXP4.P, and used importance weighting to

estimate the true classifier performance using only the training set. In this paper, we

empirically compare the following four bandit algorithms: Thompson sampling, OC-

UCB, kl-UCB, and EXP3++.

Thompson sampling
The oldest bandit algorithm is Thompson sampling (Thompson, 1933) which solves the

exploration-exploitation trade-off from a Bayesian perspective.

LetWi be the reward of heuristic ri ∈ ℛ. Observe that even with the best heuristic, we

still might not score perfectly due to having a poor classifier trained on finite data.

Conversely, a bad heuristic might be able to pick an informative candidate due to pure

luck. Thus there is always a certain level of randomness in the reward received. Let us

treat the reward Wi as a normally distributed random variable with mean νi and

variance t2i :

ðWi j �iÞ � N ð�i; t2i Þ (16)

If we knew both νi and ti
2 for all heuristics, the problem would become trivially

easy since we just need to always use the heuristic that has the highest mean

Algorithm 2 Pool-based active learning with bandit theory. Note that in addition to the set of active

learning heuristicsℛ and the test setℒS, some bandit algorithms also need to know n, the maximum

size of the training set, in advance.

Input: unlabeled set U , labeled training set ℒT, labeled test set ℒS, classifier h, desired training size n, set of

active learning heuristics ℛ, and bandit algorithm b with two functions SELECT and UPDATE.

while jℒTj < n do

Select a heuristic r� ∈ ℛ according to SELECT.

Select the most informative candidate x� from U using the chosen heuristic r� (U ; h).
Ask the expert to label x�. Call the label y�.

Add the newly labeled example to the training set: LT LT [fðx�; y�Þg.
Remove the newly labeled example from the unlabeled set: U Unfx�g.
Retrain the classifier h(x) using ℒT.

Run the updated classifier on the test set ℒS to compute the increase in the performance w.

Update the parameters of b with UPDATE(w).

end

Tran et al. (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.157 8/34

http://dx.doi.org/10.7717/peerj-cs.157
https://peerj.com/computer-science/

reward. In practice, we do not know the true mean of the reward νi, so let us add a second

layer of randomness and assume that the mean itself follows a normal distribution:

�i � Nðmi;s
2
i Þ (17)

To make the problem tractable, let us assume that the variance ti
2 in the first layer is

a known constant. The goal now is to find a good algorithm that can estimate mi and si
2.

We start with a prior on mi and si
2 for each heuristic ri. The choice of prior does

not usually matter in the long run. Since initially we do not have any information

about the performance of each heuristic, the appropriate prior value for mi is 0, i.e., there

is no evidence (yet) that any of the heuristics offers an improvement to the performance.

In each round, we draw a random sample νi′ from the normal distribution Nðmi;s
2
i Þ

for each i and select heuristic r� that has the highest sampled value of the mean reward:

r� ¼ argmax
i

v0i (18)

We then use this heuristic to select the object that is deemed to be the most informative,

add it to the training set, and retrain the classifier. Next we use the updated classifier

to predict the labels of objects in the test set. Let w be the reward observed. We now have a

new piece of information that we can use to update our prior belief about the mean m�
and the variance s�

2 of the mean reward. Using Bayes’ theorem, we can show that the

posterior distribution of the mean reward remains normal,

ð�� j W� ¼ wÞ � N ðm0�; s0�2Þ (19)

with the following new mean and variance:

m0� ¼
m�t

2
� þ ws2

�
s2� þ t2�

s02� ¼
s2
�t

2
�

s2� þ t2�
(20)

Algorithm 3 summarizes the SELECTand UPDATE functions used in Thompson sampling.

Upper confidence bounds
Next we consider the Upper Confidence Bound (UCB) algorithms which use the principle

of “optimism in the face of uncertainty.” In choosing which heuristic to use, we first

estimate the upper bound of the reward (that is, we make an optimistic guess) and pick

Algorithm 3 Thompson sampling with normally distributed rewards. Notations: ℛ is the set of

R heuristics, m is the mean parameter of the average reward, s2 is the variance parameter of the

average reward, t2 is the known variance parameter of the reward, and w is the actual reward

received.

function SELECT()

for i ∈ {1, 2, ..., R} do

νi′ draw a sample from Nðmi ;s
2
i Þ

end

Select the heuristic with the highest sampled value: r� argmax
i

�0i

function UPDATE(w)

m�
m�t

2
� þ ws2

�
s2� þ t2�

s2
�

s2
�t

2
�

s2� þ t2�

Tran et al. (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.157 9/34

http://dx.doi.org/10.7717/peerj-cs.157
https://peerj.com/computer-science/

the one with the highest bound. If our guess turns out to be wrong, the upper bound of

the chosen heuristic will decrease, making it less likely to get selected in the next iteration.

There are many different algorithms in the UCB family, e.g., UCB1-TUNED & UCB2

(Auer, Cesa-Bianchi & Fischer, 2002a), V-UCB (Audibert, Munos & Szepesvári, 2009),

OC-UCB (Lattimore, 2015), and kl-UCB (Cappé et al., 2013). They differ only in the way

the upper bound is calculated. In this paper, we only consider the last two. In Optimally

Confident UCB (OC-UCB), Lattimore (2015) suggests that we pick the heuristic that

maximizes the following upper bound:

r� ¼ argmax
i

wi þ
ffi
a

TiðtÞ ln
cn

t

� �s !
(21)

where wi is the average of the rewards from ri that we have observed so far, t is the time

step, Ti(t) is the number times we have selected heuristic ri before step t, and n is the

maximum number of steps that we are going to take. There are two tunable parameters,

a and c, which the author suggests setting to 3 and 2, respectively.

In kl-UCB, Cappé et al. (2013) suggest that we can instead consider the KL-divergence

between the distribution of the current estimated reward and that of the upper bound.

In the case of normally distributed rewards with known variance s2, the chosen heuristic

would be

r� ¼ argmax
i

wi þ
ffi
2s2

lnðTiðtÞÞ
t

r !
(22)

Algorithms 4 and 5 summarize these two UCB approaches. Note that the size of the

reward w is not used in UPDATE (w) of UCB, except to select the best arm.

Algorithm 4 Optimally Confident UCB. Notations: n is the time horizon (maximum number of time

steps), t is the current time step, Ti(t) counts how many times heuristic i has been selected before

step t, w is the reward received, and wi is the average of the rewards from ri so far.

fuction SELECT()

r� argmax
i

wi þ
ffi
3

TiðtÞ ln
� 2n

t

�r
function UPDATE(w)

t t þ 1

T�ðtÞ T�ðt � 1Þ þ 1

Algorithm 5 kl-UCB with normally distributed rewards. Notations: s2 is the variance of the

rewards, t is the current time step, Ti(t) counts how many times heuristic i has been selected

before step t, w is the reward received, and wi is the average of the rewards from ri so far.

function SELECT()

r� argmax
i

wi þ
ffi
2s2

lnðTiðtÞÞ
t

r
function UPDATE(w)

t t þ 1

T�ðtÞ T�ðt � 1Þ þ 1

Tran et al. (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.157 10/34

http://dx.doi.org/10.7717/peerj-cs.157
https://peerj.com/computer-science/

EXP3++
The exponential-weight algorithm for exploration and exploitation (EXP3) was first

developed by Auer et al. (2002b) to solve the non-stochastic bandit problem where we

make no statistical assumptions about the reward distribution. This is also often known as

the adversarial setting, where we have an adversary who generates an arbitrary sequence of

rewards for each heuristic in advance. Like Thompson sampling, the algorithm samples

from a probability distribution at each step to pick a heuristic. Here however, we construct

the distribution with exponential weighting (hence the name EXP3). We shall test

Seldin & Slivkins (2014)’s EXP3++ algorithm (see Algorithm 6). This is a generalization of

the original EXP3 and it has been shown to perform well in both the stochastic (where the

reward of each heuristic follows an unknown reward distribution) and the adversarial

regime.

Combining suggestions with social choice theory
A drawback of the above bandit methods is that at each iteration, we could only use

one suggestion from one particular heuristic. EXP4 and EXP4.P algorithms can take

advice from all heuristics by maintaining a weight on each of them. However, being a

bandit method, they require designing a reward scheme. If the reward is the performance

on a test set, we would need to keep around a separate subset of the data, which is

expensive and sometimes impossible to obtain in practice. This leads us to social choice

theory, which can combine suggestions like EXP4 and EXP4.P, while not needing the

concept of a reward. Originally developed by political scientists like Nicolas de Condorcet

and Jean-Charles de Borda, this field of study is concerned with how we aggregate

preferences of a group of people to determine, for example, the winner in an election

Algorithm 6 EXP3++ algorithm. Notations:ℛ is the set of R heuristics, t is the current time step, b is

a parameter used to weight the heuristics for selection, ξi and εi are used to compute the loss Li, ρ is

the distribution from which a heuristic is sampled, and w is the reward received.

function SELECT()

b ¼ 1

2

ffiffiffiffiffiffiffiffi
lnR

tR

r
for i ∈ {1, 2, ..., R} do

ji ¼
18 InðtÞ2

tminð1; 1
t
ðLi �minðLÞÞÞ2

εi ¼ min
� 1

2R
;b; ji

�
ri ¼

e�b�LiP
j e
�b�Lj

end

r� draw a sample from ℛ with probability distribution ρ.

function UPDATE (w)

t t þ 1

T�ðtÞ T�ðt � 1Þ þ 1

L� L� þ ð1� wÞ
ð1�Pj εjÞW� þ ε�

Tran et al. (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.157 11/34

http://dx.doi.org/10.7717/peerj-cs.157
https://peerj.com/computer-science/

(List, 2013). It has the nice property that everyone (or in our context, every active learning

heuristic) has a voice.

For each heuristic, we assign a score to every candidate with the score function s(x, h)

like before. We are neither interested in the actual raw scores nor the candidate with the

highest score. Instead, we only need a ranking of the candidates, which is achieved by a

function kðs;UÞ that provides a ranking of the unlabeled examples according to their

scores. For example, k could assign the candidate with the highest score a rank of 1,

the next best candidate a rank of 2, and so on. An aggregation function c will then

combine all the rankings into a combined ranking,

c : sðJUÞR ! sðJUÞ (23)

where sðJUÞ is a permutation over the index set of the unlabeled pool U and R is the

number of heuristics. From these we can pick the highest-ranked candidate to annotate.

See Table 2 for an example.

The main difference between this approach and the bandit algorithms is that we do

not consider the reward history when combining the rankings. Here each heuristic is

assumed to always have an equal weight. A possible extension, which is not considered

in this paper, is to use the past performance to re-weight the heuristics before aggregating

at each step. Figure 2 and Algorithm 7 provide an overview of how social choice theory

is used in pool-based active learning.

The central question in social choice theory is how we can come up with a good

preference aggregation rule. We shall examine three aggregation rules: Borda count, the

geometric mean, and the Schulze method.

In the simplest approach, Borda count, we assign an integer point to each candidate.

The lowest-ranked candidate receives a point of 1, and each candidate receives one more

point than the candidate below. To aggregate, we simply add up all the points each

Table 2 An example of how to convert raw scores into a ranking.

Score s(x; h) 0.1 0.9 0.3 0.8

Rank k(s, U) 4 1 3 2

Train with classifier h Assign scores with s1,.., sR Convert to rankings with k

Aggregate rankings with c
Select highest
ranked candidate

Add to training pool Label candidate

LT U

p(Y)

σ1(JU), ..., σR(JU)

σ(JU)x∗(x∗, y∗)

R

Figure 2 Active learning pipeline with rank aggregation methods. Unlike the bandit pipeline, there is

only one cycle in which we aggregate information from all heuristics. Additional notation: sðJUÞ is a
permutation (i.e., rank) on the index set of the unlabeled data.

Full-size DOI: 10.7717/peerj-cs.157/fig-2

Tran et al. (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.157 12/34

http://dx.doi.org/10.7717/peerj-cs.157/fig-2
http://dx.doi.org/10.7717/peerj-cs.157
https://peerj.com/computer-science/

candidate receives from every heuristic. The candidate with the most points is declared

the winner and is to be labeled next. We can think of Borda count, then, as ranking

the candidate according to the arithmetic mean.

An alternative approach is to use the geometric mean, where instead of adding up

the points, we multiply them. Bedö & Ong (2016) showed that the geometric mean

maximizes the Spearman correlation between the ranks. Note that this method requires

the ranks to be scaled so that they lie strictly between 0 and 1. This can be achieved by

simply dividing the ranks by (U + 1), where U is the number of candidates.

The third approach we consider is the Schulze method (Schulze, 2011). Out of the

three methods considered, this is the only one that fulfills the Condorcet criterion, i.e., the

winner chosen by the algorithm is also the winner when compared individually with

each of the other candidates. However, the Schulze method is more computationally

intensive since it requires examining all pairs of candidates. First we compute the number

of heuristics that prefer candidate xi to candidate xj, for all possible pairs (xi, xj). Let us

call this d(xi, xj). Let us also define a path from candidate xi to xj as the sequence of

candidates, {xi, x1, x2, ..., xj}, that starts with xi and ends with xj, where, as we move

along the path, the number of heuristics that prefer the current candidate over the next

candidate must be strictly decreasing. Intuitively, the path is the rank of a subset of

candidates, where xi is the highest-ranked candidate and xj is at the lowest-ranked.

Associated with each path is a strength p, which is the minimum of d(xi, xj) for all

consecutive xi and xj along the path. The core part of the algorithm involves finding

the path of the maximal strength from each candidate to every other. Let us call p(xi, xj)

the strength of strongest path between xi and xj. Candidate xi is a potential winner if

pðxi; xjÞ 	 pðxj ; xiÞ for all other xj. This problem has a similar flavor to the problem of

finding the shortest path. In fact, the implementation uses a variant of the Floyd–Warshall

algorithm to find the strongest path. This is the most efficient implementation that

we know of, taking cubic time in the number of candidates.

Algorithm 7 Pool-based active learning with social choice theory.

Input: unlabeled set U, labeled training set ℒT, classifier h, set of active learning suggestions R, ranking
function k, and rank aggregator c.

repeat:

for r ∈ R do

Rank all the candidates in U with k.

end

Aggregate all the rankings into one ranking using the aggregator c.

Select the highest-ranked candidate x� from U.
Ask the expert to label x�. Call the label y�.

Add the newly labeled example to the training set: LT LT [fðx�; y�Þg.
Remove the newly labeled example from the unlabeled set: U Unfx�g.
Retrain the classifier h(x) using ℒT .

until we have enough training examples.

Tran et al. (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.157 13/34

http://dx.doi.org/10.7717/peerj-cs.157
https://peerj.com/computer-science/

We end this section with a small illustration of how the three aggregation algorithms

work in Table 3.

EXPERIMENTAL PROTOCOL
We use 11 classification datasets taken from the UCI Machine Learning Repository

(https://archive.ics.uci.edu/ml/) (Lichman, 2013), with a large multiclass classification

dataset which we extracted from the SDSS project (DOI 10.5281/zenodo.58500)

(Alam et al., 2015). The code for the experiments can be found on our GitHub

repository (https://github.com/chengsoonong/mclass-sky). Table 4 shows the size and

the number of classes in each dataset, along with the proportion of the samples

belonging to the majority class and the maximum achievable performance using

logistic regression. These datasets were chosen such that we have an equal number of

binary and multiclass datasets, and a mixture of small and large datasets.

For each dataset, we use Scikit-learn (Pedregosa et al., 2011) to train a logistic regression

model using a 10-fold stratified shuffled cross-validation. Here “stratified” means that

the proportion of the classes remains constant in each split. We standardize all features

to have zero mean and unit variance. Although all examples have already been labeled,

Table 3 An example of how social choice theory algorithms rank candidates by aggregating three

heuristics: r1, r2, and r3. There are four candidates in the unlabeled pool: A, B, C, and D.

(a) An example of how the three heuristics rank four candidates A, B, C, and D. For instance, heuristic

r1 considers B to be the highest rank candidate, followed by A, C, and D.

Heuristic Ranking

r1 B A C D

r2 A C B D

r3 B D C A

(b) Aggregated ranking with Borda count and geometric mean. The scores are determined by the

relative ranking in each heuristic. For example, A is ranked second by r1, first by r1, and last by r3, thus

giving us a score of 3, 4, and 1, respectively. In both methods, candidate B receives the highest

aggregated score.

Candidate Borda count Geometric mean

A 3 + 4 + 1 = 8 3 � 4 � 1 = 12

B 4 + 2 + 4 = 10 4 � 2 � 4 = 32

C 2 + 3 + 2 = 7 2 � 3 � 2 = 12

D 1 + 1 + 3 = 5 1 � 1 � 3 = 3

(c) Aggregated ranking with the Schulze method. The table shows the strongest path strength p(xi, xj)

between all pairs of candidates. For example, p(B, D) = 3 because the path B / D is the strongest path

from B to D, where three heuristics prefer B over D. Candidate B is the winner since p(B, A) > p(A, B),

p(B, C) > p(C, B), and p(B, D) > p(D, B).

From/To A B C D

A – 1 2 2

B 2 – 2 3

C 1 1 – 2

D 2 0 1 –

Tran et al. (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.157 14/34

https://archive.ics.uci.edu/ml/
https://dx.doi.org/10.5281/zenodo.58500
https://github.com/chengsoonong/mclass-sky
http://dx.doi.org/10.7717/peerj-cs.157
https://peerj.com/computer-science/

we simulate the active learning task by assuming that certain examples do not have any

labels. For each fold, the unlabeled pool size is 70% of data up to a maximum of 10,000

examples, and the test pool consists of the remaining examples up to a maximum of

20,000. We assume all test examples are labeled. We initialize the classifier by labeling

10 random instances and using them as the initial training set. The heuristics are fast

enough such that we can assign a score to every unlabeled instance at every time step.

We use logistic regression with a Gaussian kernel approximation and an L2 regularizer.

In the binary case, the loss function is

L ¼ 1

2
θTθþ C

Xn
i¼1

ln 1þ expð�yiðθT f ðxiÞÞÞ
� 	

(24)

where xi is the feature vector of the ith example, yi ∈ {0, 1} is the label of xi, and n is

the training size. The term 1
2
θTθ is the regularization term to ensure that the weight vector

θ is not too large, and C is a regularization hyperparameter in [10-6, 106] which we find

using grid search. To speed up the training time while using the Gaussian kernel, we

approximate the feature map of the kernel with Random Kitchen Sinks (Rahimi & Recht,

2008), transforming the raw features xi into a fixed 100-dimensional feature vector f (xi).

In the multiclass case, we use the One-vs-Rest strategy, where for every class we build a

binary classifier that determines whether a particular example belongs to that class or

not. For the QBB algorithms, we train a committee of seven classifiers, where each

member is given a sample of maximum 100 examples that have already been labeled.

For the bandit algorithms, we use the increase in the MPBA on the test set as the

reward. The MPBA can be thought of as the expected value of the average recall, where

Table 4 Overview of datasets.

Dataset Size No. of

classes

No. of

features

Majority

class (%)

Max

performance

(MPBA) (%)

Glass 214 6 10 33 65

Ionosphere 351 2 34 64 89

Iris 150 3 4 33 90

Magic 19,020 2 11 65 84

Miniboone 129,596 2 50 72 88

Pageblock 5,473 5 10 90 79

Pima 733 2 8 66 71

SDSS 2,801,002 3 11 61 90

Sonar 208 2 60 53 78

Vehicle 846 4 18 26 81

Wine 178 3 13 40 94

WPBC 194 2 34 76 58

Note:
The following datasets are from the UCI Machine Learning Repository: glass, ionosphere, iris, magic, miniboone,
pageblock, pima, sonar, vehicle, wine, and wpbc. In particular, the vehicle dataset comes from the Turing Institute,
Glasgow, Scotland. The sdss dataset was extracted from Data Release 12 of SDSS-III.

Tran et al. (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.157 15/34

http://dx.doi.org/10.7717/peerj-cs.157
https://peerj.com/computer-science/

we treat the recall as a random variable that follows a Beta distribution. Compared to the

raw accuracy score, this metric takes into account class imbalance. This is because we first

calculate the recall in each class and then take the average, thus giving each class an equal

weight. Refer to Appendix A for the derivation of the MPBA, which extends Brodersen

et al. (2010)’s formula from the binary to the multiclass setting.

In total, we test 17 query strategies. This includes passive learning, eight active

learning heuristics, five bandit algorithms, and three aggregation methods. The bandit

algorithms include the four described in “Combining Suggestions with Bandit Theory”

and a baseline called EXPLORE which simply selects a random heuristic at each time step.

In other words, we ignore the rewards and explore 100% of the time. For all bandit and

rank aggregation methods, we take advice from six representative experts: PASSIVE,

CONFIDENCE, MARGIN, ENTROPY, QBB-MARGIN, and QBB-KL. We have not explored how adding

the heuristics with information density weighting to the bandits would impact the

performance. See Table 5 for a list of abbreviations associated with the methods.

Given that there are 12 datasets, each with 17 learning curves, we need a measure

that can summarize in one number how well a particular heuristic or policy does.

Building on Baram, El-Yaniv & Luz (2004)’s deficiency measure, we define the strength

of an active learner or a combiner relative to passive learning as

Strengthðh;mÞ ¼ 1�
Pn

t¼1 mðmaxÞ �mðh; tÞð ÞPn
t¼1 mðmaxÞ �mðpassive; tÞð Þ (25)

where m is a chosen metric (e.g., accuracy rate, MPBA), m(max) is the best possible

performance1, andm(h, t) is the performance achieved using the first t examples selected by

Table 5 Summary of active learning heuristics and combiners used in the experiments.

Abbreviation Type Description

PASSIVE Heuristic Passive learning

CONFIDENCE Heuristic Least confidence heuristic

W-CONFIDENCE Heuristic Least confidence heuristic with information density weighting

MARGIN Heuristic Smallest margin heuristic

W-MARGIN Heuristic Smallest margin heuristic with information density weighting

ENTROPY Heuristic Highest entropy heuristic

W-ENTROPY Heuristic Highest entropy heuristic with information density weighting

QBB-MARGIN Heuristic Smallest QBB margin heuristic

QBB-KL Heuristic Largest QBB KL-divergence heuristic

EXPLORE Bandit Bandit algorithm with 100% exploration

THOMPSON Bandit Thompson sampling

OCUCB Bandit Optimally confidence UCB algorithm

KLUCB Bandit kl-UCB algorithm

EXP3++ Bandit EXP3++ algorithm

BORDA Aggregation Aggregation with Borda count

GEOMETRIC Aggregation Aggregation with the geometric mean

SCHULZE Aggregation Aggregation with the Schulze method

1 The best possible performance in each

trial is obtained by the higher of: (1) the

performance achieved by using all the

labeled examples in the training set; and

(2) the maximum value of the learning

curves of all the methods.

Tran et al. (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.157 16/34

http://dx.doi.org/10.7717/peerj-cs.157
https://peerj.com/computer-science/

heuristic h. We can think of the summation as the area between the best possible

performance line and the learning curve of h. The better the heuristic is, the faster it

would approach this maximum line, and thus the smaller the area. Finally, so that we

can compare the performance across datasets, we normalize the measure with the area

obtained from using just passive learning. Refer to Fig. 3 for a visualization of the

strength measure.

We evaluate the algorithm performance with two metrics: the accuracy score and the

MPBA. The accuracy score is the percentage of instances in the test set where the predicted

label matches the true label. If a dataset has a dominant class, then the accuracy score

of instances within that class will also dominate the overall accuracy score. The MPBA,

on the other hand, puts an equal weight on each class and thus favors algorithms that

can predict the label of all classes equally well.

The heuristics with information density weighting and Thompson sampling have a few

additional hyperparameters. To investigate the effect of these hyperparameters, we pick

one binary dataset (glass) and one multiclass dataset (ionosphere) to investigate. Both

of these are small enough to allow us to iterate through many hyperparameter values

quickly. With W-CONFIDENCE, W-MARGIN, and W-ENTROPY, we set g in the Gaussian kernel

to be the inverse of the 95th percentile of all pairwise distances. This appears to work well,

as shown in Fig. 4. For THOMPSON, the prior values for m, s2 and the value of t2 seem

to have little effect on the final performance (see Fig. 5). We set the initial m to 0.5, the

initial s2 to 0.02, and t2 to 0.02.

RESULTS
Figures 6 and 7 show the strengths of all methods that we consider, while Figs. 8 and 9

provide selected learning curves. Plots for the six small datasets with fewer than 500

Figure 3 An illustration of the MPBA strength measure. It is proportional to the shaded area between

the (red) passive learning curve and the (blue) active learning curve. The bigger the area is, the more the

active learner outperforms the passive learner. The top dotted line indicates the maximum performance

achieved. Full-size DOI: 10.7717/peerj-cs.157/fig-3

Tran et al. (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.157 17/34

http://dx.doi.org/10.7717/peerj-cs.157/fig-3
http://dx.doi.org/10.7717/peerj-cs.157
https://peerj.com/computer-science/

examples (glass, ionosphere, iris, sonar, wine, and wpbc) are shown in Figs. 6 and 8. Plots

for the two medium-sized datasets (pima and vehicle) and the four large datasets (magic,

miniboone, pageblocks, and sdss) are shown in Figs. 7 and 9. Each figure contains two

subfigures, one reporting the raw accuracy score, while the other showing the MPBA

score.

Active learning methods generally beat passive learning in four of the six small datasets—

glass, ionosphere, iris, and wine. This can be seen by the fact that the boxplots are mostly

above the zero line in Fig. 6. For sonar and wpbc, the results are mixed—active learning

has little to no effect here. The wpbc dataset is particularly noisy—our classifier cannot

achieve an MPBA score greater than 60% (see Fig. 8). Thus it is not surprising that active

learning does not perform well here since there is not much to learn to begin with.

The advantage of active learning becomes more apparent with the larger datasets

like magic, miniboone, pageblocks, and sdss. Here there is a visible gap between the

Figure 4 Effect of g on W-CONFIDENCE and W-MARGIN using the glass and ionosphere datasets. We

examine six different values for g: the 50th, 60th, 70th, 90th, 95th, and 99th percentile of the pairwise

L1-distance between the data points. For the glass dataset (A), changing value of g has minimal effect on

the results, while for the ionosphere dataset (B), using the 90th percentile and above seems to work well.

Full-size DOI: 10.7717/peerj-cs.157/fig-4

Tran et al. (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.157 18/34

http://dx.doi.org/10.7717/peerj-cs.157/fig-4
http://dx.doi.org/10.7717/peerj-cs.157
https://peerj.com/computer-science/

passive learning curve and the active learning curve for most methods. For instance,

using a simple heuristic such as CONFIDENCE in the pageblocks dataset results in an average

MPBA score of 74% after 1,000 examples, while passive learning can only achieves

67% (see Fig. 9F).

Out of the eight active learning heuristics tested, the heuristics with the

information density weighting (W-CONFIDENCE, W-MARGIN, and W-ENTROPY) generally

perform worse than the ones without the weighting. QBB-KL performs the best in

pageblocks while it can barely beat passive learning in other datasets. The remaining

heuristics—CONFIDENCE, MARGIN, ENTROPY, and QBB-MARGIN—perform equally well in

all datasets.

We find no difference in performance between the bandit algorithms and the rank

aggregation methods. Combining active learners does not seem to hurt the performance,

even if we include a poorly performing heuristic such as QBB-KL.

For bandit algorithms, it is interesting to note that THOMPSON favors certain heuristics a

lot more than others, while the behavior of EXP3++, OCUCB, and KLUCB is almost

Figure 5 Effect of the initial values of the parameters in THOMPSON.We test 16 combinations of m, s2,

and t2 on the glass (A) and ionosphere (B) dataset. Varying these values does not seem to affect the final

performance. Full-size DOI: 10.7717/peerj-cs.157/fig-5

Tran et al. (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.157 19/34

http://dx.doi.org/10.7717/peerj-cs.157/fig-5
http://dx.doi.org/10.7717/peerj-cs.157
https://peerj.com/computer-science/

Figure 6 Boxplots of the accuracy and MPBA strength of the 16 active learning strategies, relative to passive learning, using the small datasets

(glass, ionosphere, iris, sonar, wine, and wpbc). The more positive the strength is, the better the heuristic/combiner is. Gray boxes represent

individual heuristics; blue boxes represent bandit algorithms, and red boxes are for rank aggregation methods. A strategy that is above the zero line

is better than passive learning. Each boxplot contains 10 trials. The accuracy score (A, C, E, G, I, and K) is a simple metric that simply counts up the

number of correct predictions. The MPBA score (B, D, F, H, J, and L), being the weighted average of the recall and precision, gives an equal

representation to each class. The boxes represent the quartiles and the whiskers extend to 1.5 times of the interquartile range.

Full-size DOI: 10.7717/peerj-cs.157/fig-6

Tran et al. (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.157 20/34

http://dx.doi.org/10.7717/peerj-cs.157/fig-6
http://dx.doi.org/10.7717/peerj-cs.157
https://peerj.com/computer-science/

Figure 7 Boxplots of the accuracy and MPBA strength of the 16 active learning strategies, relative to passive learning, using medium to the

large datasets (magic, miniboone, pageblocks, pima, sdss, and vehicle). The more positive the strength is, the better the heuristic/combiner is.

Gray boxes represent individual heuristics; blue boxes represent bandit algorithms, and red boxes are for rank aggregation methods. A strategy that

is above the zero line is better than passive learning. Each boxplot contains 10 trials. The accuracy score (A, C, E, G, I, and K) is a simple metric that

simply counts up the number of correct predictions. The MPBA score (B, D, F, H, J, and L), being the weighted average of the recall and precision,

gives an equal representation to each class. The boxes represent the quartiles and the whiskers extend to 1.5 times of the interquartile range.

Full-size DOI: 10.7717/peerj-cs.157/fig-7

Tran et al. (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.157 21/34

http://dx.doi.org/10.7717/peerj-cs.157/fig-7
http://dx.doi.org/10.7717/peerj-cs.157
https://peerj.com/computer-science/

Figure 8 Selected accuracy and MPBA learning curves for the small datasets (glass, ionosphere, iris, sonar, wine, and wpbc). As it would get

too cluttered to plot 17 learning curves, we only show the accuracy (A, C, E, G, I, and K) and MPBA (B, D, F, H, J, and L) learning curves for PASSIVE,

CONFIDENCE, EXP3++, and BORDA. The learning curves are averaged over 10 trials. The dotted horizontal line shows the performance obtained from

using the whole training data. Full-size DOI: 10.7717/peerj-cs.157/fig-8

Tran et al. (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.157 22/34

http://dx.doi.org/10.7717/peerj-cs.157/fig-8
http://dx.doi.org/10.7717/peerj-cs.157
https://peerj.com/computer-science/

Figure 9 Selected accuracy and MPBA learning curves for the medium to large datasets (magic, miniboone, pageblocks, pima, sdss, and

vehicle). As it would get too cluttered to plot 17 learning curves, we only show the accuracy (A, C, E, G, I, and K) and MPBA (B, D, F, H, J,

and K) learning curve for PASSIVE, CONFIDENCE, EXP3++, and BORDA. The learning curves are averaged over 10 trials. The dotted horizontal line shows

the performance obtained from using the whole training data. Full-size DOI: 10.7717/peerj-cs.157/fig-9

Tran et al. (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.157 23/34

http://dx.doi.org/10.7717/peerj-cs.157/fig-9
http://dx.doi.org/10.7717/peerj-cs.157
https://peerj.com/computer-science/

Figure 10 Selection frequencies of heuristics in THOMPSON and EXP3++, with the large datasets (magic, miniboone, pageblocks, pima, sdss, and

vehicle). The plots show how often each of the heuristics gets selected over time. The selection frequencies are averaged over 10 trials. THOMPSON

(A–F) favors certain heuristics more strongly than others. In contrast, EXP3++ (G–L) favors uniform exploration more, sampling each heuristic with

roughly equal weights. The plots for OCUCB and KLUCB are not shown here, but they are similar to EXP3++.

Full-size DOI: 10.7717/peerj-cs.157/fig-10

Tran et al. (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.157 24/34

http://dx.doi.org/10.7717/peerj-cs.157/fig-10
http://dx.doi.org/10.7717/peerj-cs.157
https://peerj.com/computer-science/

Figure 11 The effect of the initial values of the parameters in THOMPSON on the heuristic selection frequencies.We test 16 combinations of m, s2,

and t2 on the glass and ionosphere dataset. Which heuristics THOMPSON picks seems to correlate with the heuristic performance. For example, in

ionosphere, PASSIVE (the dotted purple line) and QBB-KL (the dashed dark blue line) tend to get picked less often than others.

Full-size DOI: 10.7717/peerj-cs.157/fig-11

Tran et al. (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.157 25/34

http://dx.doi.org/10.7717/peerj-cs.157/fig-11
http://dx.doi.org/10.7717/peerj-cs.157
https://peerj.com/computer-science/

indistinguishable from EXPLORE, where we explore 100% of the time (see Fig. 10).

Changing the initial values of m, s2, and t2 changes the order of preference slightly,

but overall, which heuristics THOMPSON picks seems to correlate with the heuristic

performance. For example, as shown in Fig. 11, PASSIVE and QBB-KL tend to get chosen

less often than others in the ionosphere dataset.

DISCUSSION
The experimental results allow us to answer the following questions:

1. Can active learning beat passive learning? Yes, active learning can perform much

better than passive learning, especially when the unlabeled pool is large (e.g., sdss,

miniboone, pageblock). When the unlabeled pool is small, the effect of active

learning becomes less apparent, as there are now fewer candidates to choose from.

This can be seen in Fig. 12, where we show that artificially reducing the unlabeled pool

results in a reduction in the final performance. At the same time, having a small test set

also makes the gap between the active learning curve and the passive learning curve

smaller (see Figs. 12C and 12F). This further contributes to the poorer performance on

the smaller datasets. In any case, when a dataset is small, we can label everything so

active learning is usually not needed.

Figure 12 Effect of the pool size on the learning curves. We pick two large datasets—pageblocks and

sdss—to investigate how the size of the pool affects the performance. (A) and (D) are the original

learning curves from Figs. 9F and 9J (we only show the first 200 examples so that all figures have the same

scale). For (B) and (E), we use the same test pool, but the unlabeled pool now only has a maximum of

300 candidates. Finally, for (C) and (F) the combined test pool and training pool have a size of 300.

Full-size DOI: 10.7717/peerj-cs.157/fig-12

Tran et al. (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.157 26/34

http://dx.doi.org/10.7717/peerj-cs.157/fig-12
http://dx.doi.org/10.7717/peerj-cs.157
https://peerj.com/computer-science/

2. Can active learning degrade performance? Yes, there is no guarantee that active

learning will always beat passive learning. For example, W-ENTROPY actually slows down

the learning in the many datasets. However, this only happens with certain heuristics,

like those using the information density weighting.

3. What is the best single active learning heuristic? All of CONFIDENCE, MARGIN, ENTROPY,

and QBB-MARGIN have a similar performance. However CONFIDENCE is perhaps the

simplest to compute and thus is a good default choice in practice.

4. What are the challenges in using bandit algorithms?

(a) Designing a good reward scheme is difficult. This paper uses the increase in the

classifier performance as the reward. However this type of reward is non-stationary

(i.e., it gets smaller after each step as learning saturates) and the rewards will thus

eventually go to zero.

(b) In practice, we do not have a representative test set that can be used to compute

the reward. As a workaround, Hsu & Lin (2015) computed the reward on

the training set and then used importance weighting to remove any potential

bias. For this to work, we need to ensure that every training example and

every active learning suggestion have a non-zero probability of being selected

in each step.

(c) Finally, some bandit algorithms such as Thompson sampling assumes that the

reward follows a certain distribution (e.g., Gaussian). However, this assumption

is unrealistic.

5. What are the challenges in using rank aggregation algorithms?

(a) We need to compute the scores from all heuristics at every time step. This might

not be feasible if there are too many heuristics or if we include heuristics that

require a large amount of compute power (e.g., variance minimization).

(b) The Schulze method uses O(n2) space, where n is the number of candidates.

This might lead to memory issues if we need to rank a large number of candidates

from the unlabeled pool.

(c) Before aggregating the rankings, we throw away the score magnitudes, which could

cause a loss of information.

(d) Unlike bandit algorithms, all of the rank aggregators always give each heuristic an

equal weight.

6. Which method should I use in practice to combine active learners? Since there is

no difference in performance between various combiners, we recommend using a

simple rank aggregator like Borda count or geometric mean if we do not want to

select a heuristic a priori. Rank aggregators do not need a notion of a reward—we

simply give all suggestions an equal weight when combining. Thus we neither

need to a keep a separate test set, nor do we need to worry about designing a

good reward scheme.

Tran et al. (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.157 27/34

http://dx.doi.org/10.7717/peerj-cs.157
https://peerj.com/computer-science/

Our investigation has a few limitations. Firstly, we empirically compare algorithms

that only work with single-label classification problems. Nowadays, many problems

require multi-label learning, in which each example is allowed to be in more than one

class. Our methods can be extended to work with multi-label datasets with the following

modifications. We first need a multi-label classifier. This can be as simple as a

collection of binary classifiers, each of which produces the probability that an

example belongs to a particular class. For each class, we can use an active learning

heuristic to assign a score to each unlabeled example as before. However now we need to

aggregate the scores among the classes. As suggested by Reyes, Morell & Ventura (2018),

we can use any aggregation method like Borda count to combine these scores. In

effect, the multi-label learning problem adds an extra layer of aggregation into

the pipeline.

Another limitation of our methods is that our active learning methods are myopic.

That is, in each iteration, we only pick one instance to give to a human expert for

labeling. In many practical applications like astronomy, batch-mode active learning is

preferred, as it is much more cost efficient to obtain multiple labels simultaneously.

One naive extension is to simply choose the m highest ranked objects using our current

methods. However, it is possible to have two unlabeled objects whose class membership

we are currently uncertain about, but because they have very similar feature vectors,

labeling only one of them would allow us to predict the label of the other one easily.

More sophisticated batch-mode active learning approaches have been proposed to take

into account other factors such as the diversity of a batch and the representativeness

of each batch example. These approaches include looking at the angles between

hyperplanes in support vector machines (Brinker, 2003), using cluster analysis

(Xu, Akella & Zhang, 2007), and using an evolutionary algorithm (Reyes & Ventura,

2018). How to aggregate suggestions from these approaches is an interesting problem

for future work.

CONCLUSION
In this paper we compared 16 active learning methods with passive learning. Our

three main findings are: active learning is better than passive learning; combining active

learners does not in general degrade the performance; and social choice theory provides

more practical algorithms than bandit theory since we do not need to design a

reward scheme.

APPENDIX A: POSTERIOR BALANCED ACCURACY
Most real-world datasets are unbalanced. In the SDSS dataset, for example, there are

4.5 times as many galaxies as quasars. The problem of class imbalance is even more

severe in the pageblocks dataset, where one class makes up 90% of the data and the

remaining four classes only make up 10%. An easy fix is to under sample the dominant

class when creating the training and test sets. This, of course, means that the size of

these sets are limited by the size of the minority class.

Tran et al. (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.157 28/34

http://dx.doi.org/10.7717/peerj-cs.157
https://peerj.com/computer-science/

When we do not want to alter the underlying class distribution or when larger training

and test sets are desired, we need a performance measure that can correct for the class

imbalance. Brodersen et al. (2010) show that the posterior balanced accuracy

distribution can overcome the bias in the binary case. We now extend this idea to the

multi-class setting.

Suppose we have k classes. For each class i between 1 and k, there are Ni objects in the

universe. Given a classifier, we can predict the label of every object and compare our

prediction with the true label. Let Gi be the number of objects in class i that are correctly

predicted. Then we define the recall Ai of class i as

Ai ¼ Gi

Ni

(26)

The problem is that it is not feasible to get the actual values of Gi and Ni since that would

require us to obtain the true label of every object in the universe. Thus we need a method

to estimate these quantities when we only have a sample. Initially we have no information

about Gi and Ni, so we can assume that each Ai follows a uniform prior distribution

between 0 and 1. This is the same as a Beta distribution with shape parameters a = b = 1:

Ai � Betað1; 1Þ (27)

The probability density function (PDF) of Ai is then

fAi
ðaÞ ¼ �ðaþ bÞ

�ðaÞ�ðbÞ a
a�1ð1� aÞb�1

/ a1�1ð1� aÞ1�1
(28)

where C(a) is the gamma function.

After we have trained the classifier, suppose we have a test set containing ni objects

in class i. Running the classifier on this test set is the same as conducting k binomial

experiments, where, in the ith experiment, the sample size is ni and the probability

of success is simply Ai. Let gi be the number of correctly labeled objects belonging to class i

in the test set. Then, conditional on the recall rate Ai, gi follows a binomial distribution:

ðgi jAiÞ � Binðni;AiÞ (29)

The probability mass function of ðgi jAi ¼ aÞ is thus

pgi jAi
ðgiÞ ¼ ni

gi

� �
agið1� aÞni�gi

/ agið1� aÞni�gi
(30)

In the Bayesian setting, Eq. (28) is the prior and Eq. (30) is the likelihood. To get the

posterior PDF, we simply multiply the prior with the likelihood:

fAi j gðaÞ / fAi
ðaÞ � fgi jAi

ðgiÞ
/ a1�1ð1� aÞ1�1 � agið1� aÞni�gi
¼ a1þgi�1ð1� aÞ1þni�gi�1

(31)

Tran et al. (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.157 29/34

http://dx.doi.org/10.7717/peerj-cs.157
https://peerj.com/computer-science/

Thus, with respect to the binomial likelihood function, the Beta distribution is conjugate to

itself. The posterior recall rate Ai also follows a Beta distribution, now with parameters

ðAi j giÞ � Betað1þ gi; 1þ ni � giÞ (32)

Our goal is to have a balanced accuracy rate, A, that puts an equal weight in each class.

One way to achieve this is to take the average of the individual recalls:

A ¼ 1

k

Xk
i¼1

Ai

¼ 1

k
AT

(33)

Here we have defined AT to be the sum of the individual recalls. We call ðA j gÞ the
posterior balanced accuracy, where g = (g1, ..., gk). Most of the time, we simply want to

calculate its expected value:

E½A j g � ¼ 1

k
E ½AT j g �

¼ 1

k

Z
a
 fAT j g ðaÞda

(34)

Let us call this the MPBA. Note that there is no closed form solution for the PDF fAT j g ðaÞ.
However assuming that AT is a sum of k independent Beta randomvariables, fAT j g ðaÞ can be
approximated by numerically convolving k Beta distributions. The independence

assumption is reasonable here, since there should be little to no correlation between the

individual recall rates. For example, knowing that a classifier is really good at recognizing

stars does not tell us much about how well that classifier can recognize galaxies.

Having the knowledge of fA |g (a) will allow us to make violin plots, construct

confidence intervals and do hypothesis tests. To get an expression for this, let us first

rewrite the cumulative distribution function as

FA j g ðaÞ ¼ PðA � a j gÞ

¼ P 1

k
AT � a j g

� �
¼ PðAT � ka j gÞ
¼ PFAT j g ðkaÞ

(35)

Differentiating (Eq. (35)) with respect to a, we obtain the PDF of (A |g):

fA j g ðaÞ ¼ @

@a
FA j g ðkaÞ

¼ @

@a
ðkaÞ
 @

@ka
FAT j g ðkaÞ

¼ k
 fAT j g ðkaÞ

(36)

A Python implementation for the posterior balanced accuracy can be found on our

GitHub repository (https://github.com/chengsoonong/mclass-sky).

Tran et al. (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.157 30/34

https://github.com/chengsoonong/mclass-sky
http://dx.doi.org/10.7717/peerj-cs.157
https://peerj.com/computer-science/

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The research was supported by the Data to Decisions Cooperative Research Centre whose

activities are funded by the Australian Commonwealth Government’s Cooperative Research

Centres Programme. This research was supported by the Australian Research Council

Centre of Excellence for All-sky Astrophysics (CAASTRO), through project number

CE110001020. The SDSS dataset was extracted from Data Release 12 of SDSS-III. Funding

for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating

Institutions, the National Science Foundation, and the U.S. Department of Energy Office of

Science. The SDSS-III web site is http://www.sdss3.org/. SDSS-III is managed by the

Astrophysical Research Consortium for the Participating Institutions of the SDSS-III

Collaboration including the University of Arizona, the Brazilian Participation Group,

Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the

French Participation Group, the German Participation Group, Harvard University, the

Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation

Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck

Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico

State University, New York University, Ohio State University, Pennsylvania State

University, University of Portsmouth, Princeton University, the Spanish Participation

Group, University of Tokyo, University of Utah, Vanderbilt University, University of

Virginia, University of Washington, and Yale University. The funders had no role in study

design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:

Australian Commonwealth Government’s Cooperative Research Centers Programme.

Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO):

CE110001020.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Alasdair Tran conceived and designed the experiments, performed the experiments,

analyzed the data, prepared figures and/or tables, performed the computation work,

authored or reviewed drafts of the paper, approved the final draft.

� Cheng Soon Ong conceived and designed the experiments, authored or reviewed drafts

of the paper, approved the final draft.

� Christian Wolf authored or reviewed drafts of the paper, approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code of the experiments can be found at https://github.com/chengsoonong/mclass-sky.

Tran et al. (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.157 31/34

http://www.sdss3.org/
https://github.com/chengsoonong/mclass-sky
http://dx.doi.org/10.7717/peerj-cs.157
https://peerj.com/computer-science/

REFERENCES
Alam S, Albareti FD, Prieto CA, Anders F, Anderson SF, Andrews BH, Armengaud E,

Aubourg É, Bailey S, Bautista JE, Beaton RL, Beers TC, Bender CF, Berlind AA, Beutler F,

Bhardwaj V, Bird JC, Bizyaev D, Blake CH, Blanton MR, Blomqvist M, Bochanski JJ,

Bolton AS, Bovy J, Bradley AS, Brandt WN, Brauer DE, Brinkmann J, Brown PJ,

Brownstein JR, Burden A, Burtin E, Busca NG, Cai Z, Capozzi D, Rosell AC, Carrera R,

Chen Y, Chiappini C, Chojnowski SD, Chuang C, Clerc N, Comparat J, Covey K, Croft RAC,

Cuesta AJ, Cunha K, da Costa LN, Rio ND, Davenport JRA, Dawson KS, Lee ND, Delubac T,

Deshpande R, Dutra-Ferreira L, Dwelly T, Ealet A, Ebelke GL, Edmondson EM,

Eisenstein DJ, Escoffier S, Esposito M, Fan X, Fernández-Alvar E, Feuillet D, Ak NF,

Finley H, Finoguenov A, Flaherty K, Fleming SW, Font-Ribera A, Foster J, Frinchaboy PM,

Galbraith-Frew JG, Garcı́a-Hernández DA, Pérez AEG, Gaulme P, Ge J, Génova-Santos R,

Ghezzi L, Gillespie BA, Girardi L, Goddard D, Gontcho SGA, Hernández JIG, Grebel EK,

Grieb JN, Grieves N, Gunn JE, Guo H, Harding P, Hasselquist S, Hawley SL, Hayden M,

Hearty FR, Ho S, Hogg DW, Holley-Bockelmann K, Holtzman JA, Honscheid K,

Huehnerhoff J, Jiang L, Johnson JA, Kinemuchi K, Kirkby D, Kitaura F, Klaene MA,

Kneib J, Koenig XP, Lam CR, Lan T, Lang D, Laurent P, Goff JL, Leauthaud A, Lee K, Lee YS,

Licquia TC, Liu J, Long DC, López-Corredoira M, Lorenzo-Oliveira D, Lucatello S,

Lundgren B, Lupton RH,Mack CE III, Mahadevan S,MaiaMAG,Majewski SR,Malanushenko E,

Malanushenko V, Manchado A, Manera M, Mao Q, Maraston C, Marchwinski RC,

Margala D, Martell SL, Martig M, Masters KL, McBride CK, McGehee PM, McGreer ID,

McMahon RG, Ménard B, Menzel M, Merloni A, Mészáros S, Miller AA, Miralda-Escudé J,

Miyatake H, Montero-Dorta AD, More S, Morice-Atkinson X, Morrison HL, Muna D,

Myers AD, Newman JA, Neyrinck M, Nguyen DC, Nichol RC, Nidever DL, Noterdaeme P,

Nuza SE, O’Connell JE, O’Connell RW, O’Connell R, Ogando RLC, Olmstead MD,

Oravetz AE, Oravetz DJ, Osumi K, Owen R, Padgett DL, Padmanabhan N, Paegert M,

Palanque-Delabrouille N, Pan K, Parejko JK, Park C, Pâris I, Pattarakijwanich P, Pellejero-

Ibanez M, Pepper J, Percival WJ, Pérez-Fournon I, Pérez-Ràfols I, Petitjean P, Pieri MM,

Pinsonneault MH, de Mello GFP, Prada F, Prakash A, Price-Whelan AM, Raddick MJ,

RahmanM, Reid BA, Rich J, Rix H, Robin AC, Rockosi CM, Rodrigues TS, Rodrı́guez-Rottes S,

Roe NA, Ross AJ, Ross NP, Rossi G, Ruan JJ, Rubiño-Martı́n JA, Rykoff ES, Salazar-Albornoz S,

Salvato M, Samushia L, Sánchez AG, Santiago B, Sayres C, Schiavon RP, Schlegel DJ,

Schmidt SJ, Schneider DP, Schultheis M, Schwope AD, Scóccola CG, Sellgren K, Seo H,

Shane N, Shen Y, Shetrone M, Shu Y, Sivarani T, Skrutskie MF, Slosar A, Smith VV, Sobreira F,

Stassun KG, Steinmetz M, Strauss MA, Streblyanska A, Swanson MEC, Tan JC, Tayar J,

Terrien RC, Thakar AR, Thomas D, Thompson BA, Tinker JL, Tojeiro R, Troup NW, Vargas-

Magaña M, Vazquez JA, Verde L, Viel M, Vogt NP, Wake DA, Wang J, Weaver BA,

Weinberg DH, Weiner BJ, White M, Wilson JC, Wisniewski JP, Wood-Vasey WM, Yèche C,

York DG, Zakamska NL, Zamora O, Zasowski G, Zehavi I, Zhao G, Zheng Z, Zhou X, Zhou Z,

Zhu G, Zou H. 2015. The eleventh and twelfth data releases of the sloan digital sky survey: final

data from SDSS-III. The Astrophysical Journal Supplement Series 219:12.

Audibert J-Y, Munos R, Szepesvári C. 2009. Exploration–exploitation tradeoff using variance

estimates in multi-armed bandits. Theoretical Computer Science 410(19):1876–1902

DOI 10.1016/j.tcs.2009.01.016.

Auer P, Cesa-Bianchi N, Fischer P. 2002a. Finite-time analysis of the multiarmed bandit problem.

Machine Learning 47(2–3):235–256.

Auer P, Cesa-Bianchi N, Freund Y, Schapire RE. 2002b. The nonstochastic multiarmed

bandit problem. SIAM Journal on Computing 32(1):48–77 DOI 10.1137/s0097539701398375.

Tran et al. (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.157 32/34

http://dx.doi.org/10.1016/j.tcs.2009.01.016
http://dx.doi.org/10.1137/s0097539701398375
http://dx.doi.org/10.7717/peerj-cs.157
https://peerj.com/computer-science/

Baram Y, El-Yaniv R, Luz K. 2004. Online choice of active learning algorithms. Journal of Machine

Learning Research 5:255–291.

Bedö J, Ong CS. 2016. Multivariate spearman’s ρ for aggregating ranks using copulas. Journal of

Machine Learning Research 17(201):1–30.

Berry DA, Fristedt B. 1985. Bandit Problems: Sequential Allocation of Experiments (Monographs on

Statistics and Applied Probability). Vol. 5. London: Chapman and Hall, 71–87.

Breiman L, Friedman J, Stone CJ, Olshen RA. 1984. Classification and Regression Trees. Boca Raton:

CRC press.

Brinker K. 2003. Incorporating diversity in active learning with support vector machines.

In: Proceedings of the Twentieth International Conference on International Conference on Machine

Learning, ICML’03. Palo Alto: AAAI Press, 59–66.

Brodersen KH, Ong CS, Stephan KE, Buhmann JM. 2010. The balanced accuracy and its

posterior distribution. In: Proceedings of the 2010 20th International Conference on Pattern

Recognition, ICPR ‘10. Washington, D.C.: IEEE Computer Society, 3121–3124.

Cappé O, Garivier A, Maillard O-A, Munos R, Stoltz G. 2013. Kullback-leibler upper confidence

bounds for optimal sequential allocation. Annals of Statistics 41(3):1516–1541

DOI 10.1214/13-aos1119.

Culotta A, McCallum A. 2005. Reducing labeling effort for structured prediction tasks. In:

Proceedings of the 20th National Conference on Artificial Intelligence–Volume 2, AAAI’05. Palo Alto:

AAAI Press, 746–751.

Freund Y, Schapire RE. 1996. Experiments with a new boosting algorithm. In: Proceedings of the

Thirteenth International Conference on International Conference on Machine Learning, ICML’96.

San Francisco: Morgan Kaufmann Publishers Inc., 148–156.

Freund Y, Seung HS, Shamir E, Tishby N. 1997. Selective sampling using the query by committee

algorithm. Machine Learning 28(2–3):133–168.

HsuW-N, Lin H-T. 2015. Active learning by learning. In: AAAI. Palo Alto: AAAI Press, 2659–2665.

Lattimore T. 2015. Optimally confident UCB: improved regret for finite-armed bandits.

CoRR. Available at http://arxiv.org/abs/1507.07880.

Lewis DD, Gale WA. 1994. A sequential algorithm for training text classifiers. In: Proceedings of the

17th Annual International ACM SIGIR Conference on Research and Development in Information

Retrieval. New York: Springer-Verlag, 3–12.

Lichman M. 2013. UCI machine learning repository. Available at http://archive.ics.uci.edu/ml.

List C. Social choice theory. Available at https://plato.stanford.edu/entries/social-choice/.

McCallum A, Nigam K. 1998. Employing EM and pool-based active learning for text

classification. In: Proceedings of the Fifteenth International Conference on Machine Learning,

ICML ‘98. San Francisco: Morgan Kaufmann Publishers Inc., 350–358.

Melville P, Mooney RJ. 2004. Diverse ensembles for active learning. In: Proceedings of the Twenty-

First International Conference on Machine Learning. New York: ACM, 74.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P,

Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M,

Duchesnay E. 2011. Scikit-learn: machine learning in Python. Journal of Machine Learning

Research 12:2825–2830.

Rahimi A, Recht B. 2008. Random features for large-scale kernel machines. Advances in Neural

Information Processing Systems. USA: Curran Associates Inc., 1177–1184.

Tran et al. (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.157 33/34

http://dx.doi.org/10.1214/13-aos1119
http://arxiv.org/abs/1507.07880
http://archive.ics.uci.edu/ml
https://plato.stanford.edu/entries/social-choice/
http://dx.doi.org/10.7717/peerj-cs.157
https://peerj.com/computer-science/

Reichart R, Tomanek K, Hahn U, Rappoport A. 2008. Multi-task active learning for linguistic

annotations. In: Proceedings of ACL-08: HLT. Stroudsburg: Association for Computational

Linguistics, 861–869.

Reyes O, Morell C, Ventura S. 2018. Effective active learning strategy for multi-label learning.

Neurocomputing 273:494–508 DOI 10.1016/j.neucom.2017.08.001.

Reyes O, Ventura S. 2018. Evolutionary strategy to perform batch-mode active learning on multi-

label data. ACM Transactions on Intelligent Systems and Technology 9(4):46:146:26

DOI 10.1145/3161606.

Scheffer T, Decomain C, Wrobel S. 2001. Active hidden markov models for information extraction.

In: Advances in Intelligent Data Analysis. Vol. 2189. Berlin/Heidelberg: Springer, 309–318.

Schein AI, Ungar LH. 2007. Active learning for logistic regression: an evaluation. Machine

Learning 68(3):235–265 DOI 10.1007/s10994-007-5019-5.

Schulze M. 2011. A new monotonic, clone-independent, reversal symmetric, and condorcet-

consistent single-winner election method. Social Choice and Welfare 36(2):267–303

DOI 10.1007/s00355-010-0475-4.

Seldin Y, Slivkins A. 2014. One practical algorithm for both stochastic and adversarial bandits.

In: Proceedings of the 31st International Conference on Machine Learning. Bejing: PMLR,

1287–1295.

Settles B. 2012. Active learning. Synthesis Lectures on Artificial Intelligence and Machine Learning

6(1):1–114.

Settles B, Craven M. 2008. An analysis of active learning strategies for sequence labeling tasks.

In: Proceedings of the Conference on Empirical Methods in Natural Language Processing.

Stroudsburg: Association for Computational Linguistics, 1070–1079.

Shannon CE. 1948. A mathematical theory of communication. Bell System Technical Journal

27(3):379–423.

Thompson WR. 1933. On the likelihood that one unknown probability exceeds another in view of

the evidence of two samples. Biometrika 25(3–4):285–294 DOI 10.1093/biomet/25.3-4.285.

Tran A. 2015. Photometric classification with thompson sampling. Available at https://github.com/

chengsoonong/mclass-sky/blob/master/projects/alasdair/thesis/tran15honours-thesis.pdf.

Xu Z, Akella R, Zhang Y. 2007. Incorporating diversity and density in active learning for relevance

feedback. In: European Conference on Information Retrieval. Berlin/Heidelberg: Springer,

246–257.

Tran et al. (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.157 34/34

http://dx.doi.org/10.1016/j.neucom.2017.08.001
http://dx.doi.org/10.1145/3161606
http://dx.doi.org/10.1007/s10994-007-5019-5
http://dx.doi.org/10.1007/s00355-010-0475-4
http://dx.doi.org/10.1093/biomet/25.3-4.285
https://github.com/chengsoonong/mclass-sky/blob/master/projects/alasdair/thesis/tran15honours-thesis.pdf
https://github.com/chengsoonong/mclass-sky/blob/master/projects/alasdair/thesis/tran15honours-thesis.pdf
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.157

	Combining active learning suggestions
	Introduction
	Overview of Active Learning
	Combining Suggestions
	Experimental Protocol
	Results
	Discussion
	Conclusion
	Appendix a: Posterior Balanced Accuracy
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

