
Discriminative Concept Learning Network: Reveal
High-level Differential Concepts from Shallow

Architecture

Qiao Wang1,2,3†, Sylvia Young1,4,5, Aaron Harwood1 and Cheng Soon Ong6
1Computing and Information Systems, 2Centre for Epidemiology and Biostatistics, 3Centre for Neural Engineering

The University of Melbourne, Parkville, VIC 3010, Australia.
4Centre for Diabetes Research, The Harry Perkins Institute of Medical Research, 5Centre for Medical Research

The University of Western Australia, WA 6009, Australia.
6NICTA Canberra Research Lab, Tower A, 7 London Circuit, Canberra ACT 2601, Australia.

†Email: qwan@unimelb.edu.au

Abstract—A desired capability of deep learning is to un-
derstand the high-level, class-specific features via hierarchical
features learning. However the training of deep architectures is
costly comparing to simple shallow models. Bringing the high-
level feature understanding into a simple shallow architecture
remains an open question.

We proposed a supervised learning algorithm1, enabling
binary classification along with an intrinsic ability of learning
high-level discriminative concepts via a shallow neural network
architecture. The physical architecture of the network has one
hidden layer (also serving as the output layer) responsible
for the classification and an input layer directly identifies the
informative features that constitute the high-level differential
concepts between the two classes.

Compared to other shallow classifiers, we demonstrate its
practicability in real world classification problems. We also illus-
trate the human-understandable, discriminative concepts learned
from the two image recognition exercises. Lastly, we show how
it is useful in validating the disease-associated genetic variants in
human genome as a real diagnostic genomics application.

I. INTRODUCTION

The artificial neural network has been a workhorse of
machine learning since its inception [1], and it has had a
resurgence in popularity in recent years due to the success
of deep architectures [2], [3]. Deep neural networks have
performed very well in computer vision [4]. A visual image
can be described at different abstraction levels such as pixels,
edges, object parts, objects and so on. However the shallow
architectures are considered only able to capture low level
features and simple in-variances such as “edge” or “blob” [5]–
[7].

To learn high level concepts and complex in-variances,
such as the concept of human face, deep architectures are
proposed to build hierarchical feature representations in which
simple features are detected by lower layers and feed into
higher layers for complex feature abstraction [5], [8]. The
costs of learning such high level concepts via deep architecture
include: 1) the design of multiple different-sized stacked

1This paper is published in Proceedings of International Joint Conference
on Neural Networks 2015, doi:10.1109/IJCNN.2015.7280525 c©2015 IEEE.

layers; 2) fine-tuning a large number of hyperparameters; 3)
long processing time; and 4) hundreds of machines required
[5]. Therefore, the successful training of deep architectures
remains a challenge.

In fact it turns out that shallow architectures can produce
classification performances that are equally competitive [9].
Due to the lower model complexity and being easy to train,
popular shallow classification tools [10]–[13] have achieved
great success in a broad range of real world classification
problems over the past few decades. However, how to bring
the high-level concept understanding, considered as an asset
of deep architectures, into a simple shallow model is a great
challenge.

We proposed a shallow neural network model called Dis-
criminative Concept Learning Network (DCLN) in the hope
of preserving the shallow model’s simplicity and enabling the
understanding of high-level differential concepts at the same
time. The idea is simple but important, the instances are taken
by the input layer, mapped to the hidden layer and normalised
as positive unit vectors. At the hidden layer using converted
feature representations, the two centroids of the two classes are
calculated respectively, instances at the hidden layer are grad-
ually forced to move away from their opposite class centroid
and become close to their own class centroid. This behaviour
indicates that the structural differences of the features between
the two classes can be gradually understood and amplified at
the hidden layer. Once the training is finished, an unknown
instance can be classified into a class by simply converting to
the hidden layer and comparing the distances (inner products)
to the two class centroids. The model scores each feature at the
input layer for its relative contribution to the classification after
the model training. These scores are empirically demonstrated
as effective measurements of the discriminative features which
constitute the high-level differential concepts between the two
classes. Interestingly such differential concepts, reflected by
these scores, are human-understandable as expected in our
image recognition exercises.

Inspired from this high-level concept abstraction ability,
we demonstrate how DCLN is applicable to searching for
the disease-associated genetic variants of Type 1 Diabetes in
Genome-Wide Association Studies.

http://dx.doi.org/10.1109/IJCNN.2015.7280525

II. METHOD

In this section, we describe the proposed DCLN model in a
binary classification setup. Given a dataset D = {xn, yn}Nn=1
of N individual training instances, we denote a generic input
vector for an instance x = (1, x1, . . . , xα)T as an (α + 1)-
dimensional input vector, where 1 is an appended biased unit
fixed for all instances, and y is a binary label, i.e., y ∈ {A,B},
and the superscript T as vector transpose.

Suppose there is a neural network with α+1 input features
and β hidden neurons, as illustrated in Figure 1(a). The
activation function of each hidden neuron j is given by

Zj = g(wT
j x) = g(w0j +

α∑
i=1

xiwij), j = 1, . . . , β, (1)

where wj = (w0j , w1j , . . . , wαj)
T are model parameters and

w0j is the weight for the biased unit 1. The activation function
g(·) takes the form of logistic sigmoid function that

g(t) =
1

1 + e−
1
C t
, (2)

where 0 < g(t) < 1, constant 1
C controls the slope of the

function [15]. By normalising each element Zj we obtain zj ,
such that

zj =
Zj√∑β
k=1 Z

2
k

=
Zj
||Z||22

, (3)

where || · ||22 represents `2 norm of a vector, and we have
||z||22 = 1 and 0 ≤ zj ≤ 1. The vector z composed of zj is
called a hidden neuron vector for instance x. Because the `2
norm of vector z is equal to 1 and each zj is greater than 0,
the vector z can be illustrated as a link between the origin
and a surface point of the positive region of a unit n-sphere
in Figure 1(b). Note that an instance x in the dataset can now
be represented by a hidden neuron vector z: x 7→ z.

Fig. 1. DCLN Structure and Principle

A key concept of the DCLN algorithm is the centroid of a
class at the hidden layer, computable by using hidden neuron
vectors z’s. The general form of the two centroids of class

A and B is defined as follows. ∀x in a class, the centroid
vy for class y ∈ {A,B} is a β-dimensional vector containing
elements vyj (j = 1, · · · , β) which is given by

vyj =

∑
n∈yznj√∑β

k=1(
∑

n∈yznk)2
, y ∈ {A,B},

where znj is the jth element of the hidden neuron vector z for
the nth instance in the class y. The centroid can be illustrated
as a vector representative of all the samples in each class at
the hidden layer. Now that a centroid is in fact computed from
hidden neuron vectors, it also holds the feature that ||v||22 = 1
and 0 ≤ vj ≤ 1. Here v is a generic representation of the
centroids, vA or vB.

Once the two centroids are obtained, each instance in
the data can measure its distances to the two centroids by
calculating the inner products respectively for the two classes:

p = 〈z,vA〉 = ||z|| · ||vA|| · cos θ = 1 · cos θ,

where θ is the angle between vector z and vA. Geometrically
speaking, in this scenario, p is the projection of z to vA shown
in Figure 1(b). Similarly we have q = 〈z,vB〉 which is z’s
projection to vB. Then the posterior probabilities of an instance
belonging to class A and class B at the hidden layer are defined
as:

P (y = A|z) :=
p

p+ q
, P (y = B|z) :=

q

p+ q
(4)

which ensures that the two posterior probabilities sum to unity.

For the moment, consider a selected instance x ∈ A.
Ostensibly its memberships to the two classes at the original
input layer are: P (y = A|x ∈ A) = 1 and P (y = B|x ∈
A) = 0. However after mapping it to z, its probabilities of
belonging to class A and B at the hidden layer are redefined
by equation 4. Due to the mapping x 7→ z being subject to
a number of factors, such as the randomly initiated w0, its
membership probability to class A is reduced below 1 at z:
P (y = A|z ∈ A) = p

p+q ≤ 1. To recover its membership
probability back to 1 for class A at the hidden layer, the
following must be satisfied:

lim
q/p→0

p

p+ q
= lim
q/p→0

1

1 + q
p

= 1 = P (y = A|x ∈ A). (5)

Because the closeness is defined as the projection to the
centroid, q/p → 0 in equation 5 implies: 1) 0 < q � p < 1,
representing z ∈ A is moving much closer to vA and furtherer
away from vB; or 2) q = 0 and 0 < p < 1 means the z ∈ A is
orthogonal to vB with projection p to vA. In both cases, the
instance is moving away from vB, and at least getting close
or very close to the vA via the reconstruction of its class
membership at the hidden layer. Symmetrically, we can derive
the similar story for instance z ∈ B that is moving away from
vA and getting closer to vB.

In summary, the membership recovery at the hidden layer is
trying to force the instances moving away from their opposite
class centroid and being around to their own class centroid
(Figure 1(c)(d)). Such behaviour indicates that the learned data
representation z is trying to capture and amplify the structural
differences between the two classes. Once the two classes are
well separated at the hidden layer, the binary classification

can be done by assigning an unknown instance to the nearest
centroid.

Now the question is how to recover the instance member-
ship by learning the optimal w∗ that guides the mapping of
x 7→ z. Below we discuss two simple ways of learning w∗ by
either minimising cross-entropy (CE) or squared error (SE).
We start with the cross-entropy method.

Firstly, we employ an indicator function for an instance xn
as below:

γn = γ(xn) =

{
1, if xn ∈ class A
0, otherwise.

Assuming γn|xn ∼ Bernoulli(P (yn = A|z)), the sample
likelihood is:

L(w|D) =

N∏
n=1

P (yn = A|z)γnP (yn = B|z)1−γn , (6)

where P (yn = B|z)1−γn = (1 − P (yn = A|z))1−γn . For
any instance in any case, one term must be equal to 1 in
equation 6, either P (yn = A|z)γn or P (yn = B|z)1−γn

because one indicator function must be 0, either γn or 1−γn.
In such a case, the likelihood function reaches its maximum
value 1 when ∀P (yn = A|z)γn ≡ 1 for γn = 1, and
∀P (yn = B|z)1−γn ≡ 1 for γn = 0. This means, if we have a
method to optimise the likelihood function to its maximum,
the membership probability for the given instance will be
recovered accordingly at the hidden layer.

To maximise the likelihood function, we convert it into the
cross-entropy to minimise as the following:

E(w|D) = −
N∑
n=1

{γn logP (yn = A|z)+

(1− γn) log(1− P (yn = A|z))}. (7)

The commonly used Stochastic Gradient Descent (SGD)
is employed here as the online learning approach of seeking
the optimal model parameters w∗. At a given epoch, update
the w, in the opposite direction of the gradient by a certain
amount for every instance x: ∆wij = −η ∂E

∂wij
, where η is the

learning rate. The function reaches its local minimum when the
derivatives are equal to 0. For each instance, ∆wij is calculated
by the chain rule of partial derivatives, as shown below:

∆wij = −η ∂E(w|D)

∂wij
=

− η ∂E(w|D)

∂P (y = A|z)
· ∂P (y = A|z)

∂zj
· ∂zj
∂Zj

· ∂Zj
∂wij

. (8)

Hence we can now derive the four elementary components of
equation 8 in a one-by-one manner. The first component is easy
to be obtained. Simply by regarding equation 7 as a function
of P (y = A|z), we have

− η ∂E(w|D)

∂P (y = A|z)
= η

(γn
P (y = A|z)

− 1− γn
1− P (y = A|z)

)
.

(9)

Recall from equation 4 that P (y = A|z) equals to p
p+q ,

where p represents the inner product of the instance and the

centroid of class A, and q the inner product of the instance
and the centroid of class B. In order to explicitly express the
inner product as a function over zj , we rewrite equation 4 into

P (y = A|z) =
U(zj)

V (zj)
,

where

U(zj) = p = 〈z,vA〉 =

∑β
k=1(zk

∑
n∈A znk)√∑β

k=1(
∑
n∈A znk)2

(10)

and

V (zj) = p+ q = 〈z,vA〉+ 〈z,vB〉 =∑β
k=1(zk

∑
n∈A znk)√∑β

k=1(
∑
n∈A znk)2

+

∑β
k=1(zk

∑
n∈B znk)√∑β

k=1(
∑
n∈B znk)2

, (11)

where zj is derived by equation 3. With U and V , the P (y =
A|z) is known, and hence equation 9 is solved.

The second term in equation 8 is calculated as the follow-
ing:

∂P (y = A|z)

∂zj
=

∂

∂zj

(U(zj)

V (zj)

)
=
(U
V

)′
=
U ′V − V ′U

V 2
,

(12)
where U

′
and V

′
are derivatives with respect to zj for U and

V respectively. Treating zj as the only variable for both U and
V , the derivatives have the following forms:

U ′ =
dU(zj)

dzj
=

∑
n∈A znj√∑β

k=1(
∑
n∈A znk)2

= vAj (13)

and

V ′ =
dV (zj)

dzj
=

∑
n∈A znj√∑β

k=1(
∑
n∈A znk)2

+

∑
n∈B znj√∑β

k=1(
∑
n∈B znk)2

= vAj + vBj . (14)

Therefore, the second partial derivative component in equation
8 is solved by substituting equations 10, 11, 13 and 14 into
12.

With respect to resolving the third component in equation
8 we directly present the solution of the derivative, then show
the proof of it.

∂zj
∂Zj

= (

β∑
k′=1

Z2
k′

)(

β∑
k=1

Z2
k)−

3
2 for k

′
6= j. (15)

Proof of equation 15: We can rewrite equation 3 into

zj = 1/

√∑β
k=1 Z

2
k

Z2
j

= 1/

√√√√1 +

∑β

k′=1
Z2
k′

Z2
j

for k
′
6= j.

Now let

T = 1 +

∑β

k′=1
Z2
k′

Z2
j

and we can conveniently compute

dzj
dT

= −1

2
T−

3
2 = −1

2
(1 +

∑β

k′=1
Z2
k′

Z2
j

)−
3
2 (16)

as well as

dT

dZj
= −2Z−3j

β∑
k′=1

Z2
k′

for k
′
6= j. (17)

Equations 16 and 17 consequently give us the result that

∂zj
∂Zj

=
dzj
dT
· dT
dZj

= Z−3j (

β∑
k′=1

Z2
k′

)(

∑β
k=1 Z

2
k

Z2
j

)−
3
2 =

(

β∑
k′=1

Z2
k′

)(

β∑
k=1

Z2
k)−

3
2 for k

′
6= j.

The last component ∂Zj

∂wij
in equation 8 is dependent on the

input units. In general it takes the form of

∂Zj
∂wij

=
1

C
·xi·g(

α∑
i=1

xiwij)(1−g(

α∑
i=1

xiwij)) =
1

C
xiZj(1−Zj).

(18)
So far we have explicitly derived all components required by
equation 8. Therefore, we need to update w for every instance
using equation 8 to minimise the cross-entropy described by
equation 7.

Next, we explore an alternative way of learning w∗ by
minimising squared error as mentioned previously. Squared
error generally takes the following form:

E(w|D) =
1

2

N∑
n=1

||γn − P (yn = A|z)||2 =

1

2

N∑
n=1

||1− γn − P (yn = B|z)||2. (19)

Because all squared terms in equation 19 are equal or greater
than 0, the squared error function reaches its minimum value 0
when ∀P (yn = A|z) ≡ 1 for γn = 1, and ∀P (yn = B|z) ≡ 1
for γn = 0. Therefore, the minimum of squared error function
also leads to the membership recovery at the hidden layer.

Similarly, as was done with the cross-entropy method, SGD
is also used here searching for the minimum, and w is updated
for all instances. The chain rule of partial derivatives is almost
the same as equation 8 except for the first term which is now
in the form of:

−η ∂E(w|D)

∂P (y = A|z)
= η(γn − P (yn = A|z)).

The remaining three terms in equation 8 are exactly the same
as the ones used in cross-entropy method (equations 12, 15
and 18).

III. ALGORITHM FOR TRAINING THE DCLN MODEL

To update w with equation 8 under the current neural
network setting, DCLN firstly calculates the two centroids at
the hidden layer via the randomly initiated weights w0, Figure
1(c). Two centroids are temporarily fixed for the current epoch
(going through every instance in the data exactly once). w is
updated with wn ← wn−1+∆w for every instance within the
current epoch one by one in a random order by equation 8. This
will recover the membership probability for every instance to
some extent as we discussed previously, Figure 1(d). After
that, the two centroids are re-calculated, Figure 1(e), and the
above procedure is repeated until some pre-defined number of
epochs is reached. The DCLN training algorithm is detailed in
Algorithm 1.

Algorithm 1 Training DCLN with Cross-Entropy (CE) and
Squared Error (SE) Minimisation

Require: Input data D = {xn, yn}Nn=1, y ∈ {A,B}.
1: Set optimisation method, either CE or SE.
2: Set hyperparameters: hidden layer dimension β; learning

rate η; sigmoid slope factor C; maximum epoch.
3: Randomly initiate w: wij ∈ [−0.5, 0.5], where i ∈ [0, α]

for input layer and j ∈ [1, β] for hidden layer.
4: w∗, v∗A and v∗B ← ∅; min← 1.
5: repeat
6: for each instance xn, where n ∈ [1, N] do
7: Zn: Znj ← 1/(1 + e−

1
C (wT

j xn)) for j ∈ [1, β].

8: zn: znj ← Znj/
√∑β

k=1 Z
2
nk for j ∈ [1, β].

9: end for
10: for y ∈ {A,B} do
11: vy: vyj ← (

∑
n∈yznj)/

√∑β
k=1(

∑
n∈yznk)2, for

j ∈ [1, β].
12: end for
13: if 〈vA,vB〉 < min then
14: w∗ ← w; v∗A ← vA; v∗B ← vB; min← 〈vA,vB〉.
15: end if
16: for every instance xn in random order do
17: U ← 〈zn,vA〉; V ← 〈zn,vA + vB〉.
18: for j ∈ [1, β] do
19: U

′ ← vAj ; V
′ ← vAj + vBj .

20: for i ∈ [0, α] do
21: ∆w ← (U

′
V − V

′
U)/V 2 · (

∑β

k′=1
Z2
nk′

) ·
(
∑β
k=1 Z

2
nk)−

3
2 · 1C ·xni·Znj(1−Znj), for k

′ 6= j.

22: if xn ∈ A then
23: w

(CE)
ij ← w

(CE)
ij + η · V/U ·∆w.

24: w
(SE)
ij ← w

(SE)
ij + η · (1− U/V) ·∆w.

25: else
26: w

(CE)
ij ← w

(CE)
ij − η/(1− U/V) ·∆w.

27: w
(SE)
ij ← w

(SE)
ij − η · U/V ·∆w.

28: end if
29: end for
30: end for
31: end for
32: until epoch=h.
33: output w∗, v∗A and v∗B.

One thing to note here is that for very imbalanced data,

Fig. 2. Non-Linearly Separable Synthetic Data

-8

-6

-4

-2

 0

 2

 4

 6

 8

-8 -6 -4 -2 0 2 4 6 8

XOR

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

-10-8 -6 -4 -2 0 2 4 6 8 10

SURROUND

-6

-4

-2

 0

 2

 4

 6

-10-8 -6 -4 -2 0 2 4 6 8 10

INTERVAL

-8

-6

-4

-2

 0

 2

 4

 6

 8

-4 -3 -2 -1 0 1 2 3 4

COMPLEMENT

Fig. 3. 〈vA,vB〉 for 100 Epochs on Synthetic Data

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

SURROUND (CE)
XOR (CE)

INTERVAL (CE)
COMPLEMENT (CE)

SURROUND (SE)
XOR (SE)

INTERVAL (SE)
COMPLEMENT (SE)

Fig. 4. Prediction Accuracy on Test Set of Synthetic Data for 100 Epochs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

SURROUND (CE)
XOR (CE)

INTERVAL (CE)
COMPLEMENT (CE)

SURROUND (SE)
XOR (SE)

INTERVAL (SE)
COMPLEMENT (SE)

assuming n1 = 10 instances for A and n2 = 1000 instances
for B, instances in class A have much lower chances of getting
into the update of w. The update is dominated by instances in
class B, and hence the update is biased to the movement of
vB. To balance this, we can simply manipulate the learning
rate by using an “adjusted” learning rate η∗, instead of η,
differently to the two classes. Here, in Algorithm 1, we may
use η∗B = η × n1/n2 for x ∈ B if n1 < n2 when updating
w. And symmetrically, use η∗A = η × n2/n1 for x ∈ A if
n2 < n1. This is a simple idea of slowing down the update for
the class with too many samples. The learning rate is one of
the most important parameters and deserves more investigation
in future.

Generally it is expected to see that the two centroids, as
the class representatives, are moving away from each other as
the training proceeds. During training, the two centroids v∗A
and v∗B with maximum distance (i.e. minimum inner product
between each other) are recorded along with the corresponding
w∗. Once the DCLN is trained, we can map an unknown
instance x 7→ z via equations 1, 2 and 3 using calculated
w∗, and then classify the instance by simply assigning it to
the nearest class centroid at the hidden layer, i.e., comparing
〈z,v∗A〉 and 〈z,v∗B〉.

To test the model’s classification ability and to explore

TABLE I. LIST OF DATA USED IN BENCHMARKING THE
CLASSIFICATION PERFORMANCE

UCI Data Description Class A Class B
Bupa Liver disorders 200 145

Ionosphere Radar Returns from the Ionosphere 225 126
Sonar Connectionist Bench, Mines VS. Rocks 111 97

Wpbc* Breast Cancer Wisconsin, Prognostic 151 47
Wdbc* Breast Cancer Wisconsin, Diagnostic 357 212
SPECT SPECT Heart Images 212 55

SPECTF SPECTF Heart Images 212 55
*The first column of data is sample ID which has been removed before processing.

whether the two centroids are moving apart from each other
in practice, we created four non-linearly separable synthetic
data shown in Figure 2. For each data, 2000 instances (points)
are created separately for the two classes. Each point has two
features: horizontal and vertical axis coordinates. Points in red
belongs to class A and points in blue are in class B. For each
class, we randomly select 1000 instances for training and use
the rest 1000 instances for testing.

We apply DCLN with both CE and SE optimisations to
each data. For each trial, the DCLN is set for 100 epochs
with hyperparameters β = 50, η = 0.1 and C = 0.1. The
inner product 〈vA,vB〉 and the prediction accuracy on the
test set are recorded at each epoch. A total of 50 trials were
done. As the training proceeds, the average inner product and
the classification accuracy at each epoch are illustrated in
Figure 3 and Figure 4 respectively. It is evident that all data
experienced the expected decline of 〈vA,vB〉 which clearly
indicates that the two centroids are moving in the opposite
way as we expected. And also the classification accuracy on
the test sets quickly reach the maximum 1 for nearly all data.
The variances between these curves may be subject to different
factors. Some synthetic data may be more sensitive to a
specific hyperparameter setting, and the proper representations
for some data may also affect the convergence speed. For
simplicity, we just used a fixed parameter setting in all cases
to demonstrate the idea at this stage.

IV. CLASSIFICATION WITH REAL WORLD DATASETS

The previous discussion demonstrates the effectiveness and
the expected behaviour of DCLN on several simple synthetic
data. Now we examine its practicability in real world classifica-
tion problems. Below we apply DCLN to 7 real world binary
classification datasets obtained from UCI Machine Learning
Repository [16] with sample size details listed in Table I. The
raw feature values are used as input in all experiments.

We benchmark DCLN against two popular shallow mod-
els: Support Vector Machine (SVM) [10], [11] with popular
LIBSVM library [13], and Extreme Learning Machine (ELM)
[12]. We downloaded the LIBSVM 3.18 from http://www.csie.
ntu.edu.tw/∼cjlin/libsvm/ and the MATLAB version of ELM
from http://www.ntu.edu.sg/home/egbhuang/elm codes.html.

To report the best classification result for each model on
each data, selection of hyperparameters for each model is
obtained via the following experiment setting: A total of 50
trials have been done for the experiment. For each trial, we
randomly choose 75% samples (sampling without repeating)
as the training set, and use the remaining 25% as the test set.
For SVM model, three widely used kernels such as Linear,
Radial Basis Function (RBF) and Polynomial kernels are tested

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.ntu.edu.sg/home/egbhuang/elm_codes.html

TABLE II. MODEL COMPARISONS FOR CLASSIFICATION
PERFORMANCE

SVM ELM DCLN

Data Metric Linear RBF Poly Neuron CE SE

Bupa Bal-Accuracy 0.67 0.60 0.66 0.62 0.67 0.69
Accuracy 0.69 0.65 0.67 0.63 0.69 0.70

Ionosphere Bal-Accuracy 0.85 0.93 0.81 0.83 0.90 0.90

Accuracy 0.87 0.94 0.86 0.87 0.92 0.92

Sonar Bal-Accuracy 0.76 0.85 0.50 0.76 0.81 0.81

Accuracy 0.76 0.85 0.53 0.76 0.82 0.82

Wpbc Bal-Accuracy 0.64 0.50 0.57 0.54 0.62 0.65
Accuracy 0.79 0.77 0.66 0.76 0.64 0.61

Wdbc Bal-Accuracy 0.94 0.50 0.84 0.85 0.90 0.90

Accuracy 0.95 0.63 0.87 0.87 0.90 0.91

SPECT* Bal-Accuracy 0.78 0.77 0.65 0.73 0.79 0.77

Accuracy 0.76 0.74 0.36 0.70 0.76 0.77

SPECTF* Bal-Accuracy 0.61 0.65 0.58 0.60 0.72 0.77
Accuracy 0.72 0.47 0.73 0.51 0.70 0.65

*The 75:25 split for training and testing sets doesn’t apply. The source of data has
provided the training and testing sets which are used directly in the experiment.

in the experiment. For ELM, various numbers of neurons are
tested. For DCLN, we assess both the CE and SE minimisation
methods. The details of hyperparameters tuning and DCLN
sample code are in [14]. Once the best hyperparameters setting
is determined in the training data, we predict on the test data
and report the average Balanced Accuracy (Bal-Accuracy) and
Accuracy in Table II. As can be seen from Table I, it is obvious
that the samples are very imbalanced between the two classes
in most cases, and hence the Bal-Accuracy is the preferred
metric in comparing the classification performance.

As illustrated in Table II, DCLN received four top Bal-
Accuracy, while SVM is ranked highest in the other three by
Bal-Accuracy. For Bupa, DCLNSE reported the highest Bal-
Accuracy 0.69, followed by SVMLinear’s 0.67. The Accuracy
results are similar between the DCLNSE and SVMLinear, with
0.70 and 0.69 respectively. For Ionosphere, SVMRBF reported
the best Bal-Accuracy 0.93, followed closely by DCLN’s 0.90.
The accuracy between the two are also close, with 0.94 and
0.92 respectively. Similarly, for Sonar, SVMRBF received the
top Bal-Accuracy and Accuracy at 0.85, followed closely by
DCLN’s 0.81 and 0.82 for Bal-Accuracy and Accuracy. For
Wpbc, DCLNSE received the highest Bal-Accuracy 0.65, fol-
lowed by SVMLinear’s 0.64, but SVMLinear reported a high
Accuracy 0.79 in this scenario. For Wdbc, SVMLinear reported
the highest Bal-Accuracy 0.94, followed by DCLNSE’s 0.90.
In terms of the Accuracy, SVMLinear is higher than DCLNSE
by 4%. For SPECT, DCLNCE reported the best Bal-Accuracy
0.79, followed by SVMLinear’s 0.78. On the other hand,
DCLNSE received the top 0.77 in Accuracy, followed by
SVMLinear’s 0.76. Lastly, for SPECTF, DCLNSE reported
highest Bal-Accuracy 0.77, followed by SVMRBF ’s 0.65 in
this case.

In summary, the differences between Bal-Accuracy and
Accuracy are relatively small, and DCLN is stable and quite
competitive to other shallow classifiers.

V. HIGH-LEVEL DISCRIMINATIVE CONCEPTS LEARNING

Here we reveal another intrinsic capability of DCLN. That
is the input layer by itself can directly tell the high-level

discriminative features that constitute the differential concepts
between the two classes.

Recall from previous discussion, we only have one input
layer and one hidden layer. There exists a mapping x 7→ z
via w, and the classification is entirely decided by z. An
element zj receives its value directly from the normalised
g(wT

j x) (Equations 1, 2 and 3). Therefore, each feature xi
contributes to a hidden neuron j by wij at the input layer,
and its contribution to the vector z (classification deciding
factor) at the input layer is characterised by

∑β
j=1 wij which

becomes a natural measurement of the relative contribution
of xi to the classification. We denote Ω to this contribution:
Ω := {Ωi =

∑β
j=1 wij} for features {xi} of an instance x.

On the other hand, as we demonstrated previously, vA
and vB are moving away from each other. This indicates the
structural differences between the two classes are learned and
amplified gradually at the layer z. That means there must be
a w guiding the mapping x 7→ z that is responsible for this
difference amplification. Through w, the structural differences
at the input layer can be aware, transformed and gradually
amplified at the layer z. Since the structural differences in
x can be aware through w, and the natural measurement of
the relative contribution for the features at the input layer
is quantified by Ω which is made up of w, then a natural
hypothesis would be: The contribution Ω can quantify the
structural differences for the features at the input layer, and
reflect what features are relatively important in separating the
two classes via such quantification.

We empirically demonstrate that the Ω quantifies such
structural differences between the two classes directly from
the features at the input layer. Interestingly, such quantification
reveals the human-understandable, high-level discriminative
concepts between the two classes in the following two image
recognition exercises:

We downloaded the MNIST Handwritten Digit Database
[17] containing 60,000 training samples and 10,000 testing
samples for the 10 handwritten digit classes 0 − 9, each in
28 × 28 = 784 pixels (features). Examples are shown in
Figure 5. For every pair of digit classes, we train DCLN
using instances of the two digit classes with parameters
β = 10, η = 1, epochs = 200 and C = 10000.

Once the training is finished, we receive the optimal w∗

and we calculate Ωi =
∑β
j=1 w

∗
ij for every feature xi. After

that we plot in Figure 6 with calculated Ω values to see if
any visually meaningful concepts between the two classes can
be reflected by Ω at the original input layer. As can be seen
from Figure 6, the top-left corner is the Ω plot for digit class
0 (with 5923 training samples) and class 1 (with 6742 training
samples) at the input layer. In this plot, the overall shape looks
like the ”Layered Union” of 0 and 1, in which the digit 1 is
floating on top of the digit 0. If we only look at the points with
Ω lower than -0.001, then visually the informative features are
clearly separated from the background. Similar things can be
seen in other digit class pairs in Figure 6. These plots suggest
that from 784 pixels (features), Ω is able to visually identify
the informative features that constitute the differential concepts
of the two classes. The selection of Ω spectra is key to isolating
the differential concepts from the noises, and deserve further
investigations.

Fig. 5. The MNIST Handwritten Digits

Fig. 6. Discriminative Concepts Learned for Pairs of MNIST Digit Classes

-5

 0

 5

 10

 15

 20

 25

 30

-5 0 5 10 15 20 25 30

Digit 0 and 1

-0.009

-0.008

-0.007

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

 0

 0.001

-5

 0

 5

 10

 15

 20

 25

 30

-5 0 5 10 15 20 25 30

Digit 0 and 8

-0.02
-0.018
-0.016
-0.014
-0.012
-0.01
-0.008
-0.006
-0.004
-0.002
 0
 0.002

-5

 0

 5

 10

 15

 20

 25

 30

-5 0 5 10 15 20 25 30

Digit 7 and 9

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

-5

 0

 5

 10

 15

 20

 25

 30

-5 0 5 10 15 20 25 30

Digit 4 and 7

-0.045

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

-5

 0

 5

 10

 15

 20

 25

 30

-5 0 5 10 15 20 25 30

Digit 4 and 5

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

-5

 0

 5

 10

 15

 20

 25

 30

-5 0 5 10 15 20 25 30

Digit 6 and 8

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

-5

 0

 5

 10

 15

 20

 25

 30

-5 0 5 10 15 20 25 30

Digit 2 and 3

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

-5

 0

 5

 10

 15

 20

 25

 30

-5 0 5 10 15 20 25 30

Digit 5 and 9

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

-5

 0

 5

 10

 15

 20

 25

 30

-5 0 5 10 15 20 25 30

Digit 1 and 2

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

Fig. 7. The Face Recognition Database (MIT Media Lab)

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

To provide further support, we apply it to a more com-
plicated exercise using Face Recognition data [18] developed
by the Media Lab of Massachusetts Institute of Technology
(MIT). This data contains about 4000 human facial images
with 2000 training samples and 2000 testing samples, each
in 128 × 128 grayscale pixels (features). Images are cat-
egorised into different facial classes such as Female/Male,
Child/Senior, Smiling/Serious and African/Asian/Caucasian.
Some examples are illustrated in Figure 7. Similar like what
we did with MNIST experiment, we plot the Ω for each
of the following facial class pairs: 1) Training DCLN on
class pairs of Male/Female and Smiling/Serious with β =

Fig. 8. Discriminative Concepts Learned for Pairs of Facial Classes

-20

 0

 20

 40

 60

 80

 100

 120

 140

-20 0 20 40 60 80 100 120 140

Caucasian_African

-0.007

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

 0

 0.001

-20

 0

 20

 40

 60

 80

 100

 120

 140

-20 0 20 40 60 80 100 120 140

Child_Senior

-0.0025

-0.002

-0.0015

-0.001

-0.0005

 0

 0.0005

-20

 0

 20

 40

 60

 80

 100

 120

 140

-20 0 20 40 60 80 100 120 140

Asian_African

-0.003

-0.0025

-0.002

-0.0015

-0.001

-0.0005

 0

 0.0005

-20

 0

 20

 40

 60

 80

 100

 120

 140

-20 0 20 40 60 80 100 120 140

Male_Female

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

-20

 0

 20

 40

 60

 80

 100

 120

 140

-20 0 20 40 60 80 100 120 140

Asian_Caucasian

-0.004

-0.0035

-0.003

-0.0025

-0.002

-0.0015

-0.001

-0.0005

 0

 0.0005

 0.001

-20

 0

 20

 40

 60

 80

 100

 120

 140

-20 0 20 40 60 80 100 120 140

Smiling_Serious

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

10, η = 10, epochs = 100 and C = 1000; 2) Training
on class pairs of Asian/African and Child/Senior with β =
20, η = 1, epochs = 300 and C = 10000; 3) Training on
class pairs of Caucasian/African and Asian/Caucasian with
β = 30, η = 10, epochs = 100 and C = 10000. (NB: here we
calculated the adjusted learning rate η∗ from η, and use it in
the algorithm as we have discussed previously.)

The Ω plots are obtained after the training, and illustrated
in Figure 8. Intuitively, Ω captured the high-level discrimi-
native concepts for each of the facial class pairs. For pairs
of ethnic groups, the subtle facial differences in the areas
of forehead, eyes, cheeks, nose and jaw are highlighted. The
pairs of Caucasian/African and Asian/African are quite similar
except for the slight differences in the area of the cheeks
and forehead. However the pair of Asian/Caucasian shows
large facial differences than the other two ethnic pairs. For
Male/Female, on the other hand, the key areas such as eye,
beard and eyebrow are identified. Such areas are also key to
humans to tell the genders. For Smiling/Serious, as in our
common sense, the mouth area stands out as we expected.
Compared to the general concept of human face learned by
the “grandmother neuron” in deep architecture [5], DCLN is
able to illustrate the clear discriminative concepts using only
Ω values directly at the input layer. The learned concepts are
naturally the key to the binary classification.

So far we have visually demonstrated the role of Ω in
revealing the high-level differential concepts in binary classifi-
cations. The true predictive power of the identified informative

features needs to be further verified in real world applica-
tions. To give a simple example, we show how Ω is useful
in searching for the informative biomarkers in case-control
genomics data as a real diagnostic genomics application in the
next section.

VI. DISCRIMINATIVE BIOMARKERS IDENTIFICATION IN
GENOME-WIDE ASSOCIATION STUDIES

In human DNA, the genetic variants between the individu-
als are called the Single Nucleotide Polymorphism (SNPs). As
an example, the A-T base pair at a given genome location in
a population may differ from the C-G base pair in another
population at the same genome location. To explain how
SNP variants are affecting the disease risk, Genome-Wide
Association Studies (GWAS) is employed to assay millions
of SNPs for multiple individuals at the same time [19]. In this
case, GWAS data contains thousands of individuals, in which
the people carrying the disease are termed cases, while the
healthy people are called controls. Individuals are genotyped
at million genome locations. At a genome location for a given
individual, one of the three possible categorical genotypes
0, 1 and 2 representing the dominant homozygous (AA),
heterozygous (Aa), and recessive homozygous (aa) respectively,
is recorded for the SNP at that location. Therefore, GWAS is
a high dimensional data with millions of SNPs, and thousands
of samples either in case or in control group.

It is broadly believed that SNPs do not individually affect
the disease [20], but rather interacting with each other with
non-negligible synergistic effects [21]. Extensive efforts have
been made to exhaustively examine all SNP pairs in GWAS
data and select the pairs with strong joint effects [22]–[27].
In a nutshell, existing methods take the case-control GWAS
data, analyse every SNP pair by a predefined statistical test,
and generate a list of surviving pairs ranked by the test. The
reported SNP pairs are expected to be the key features to
differentiating between case and control [26], and an inter-
actions network can be built and visualised from that point.
However the validation for their segregation ability is largely
missing. As a simple case study, we demonstrate how DCLN
is applied to validate the discriminative power for the SNP
pairs reported by the widely used χ2 test [29]–[31], and how
a discriminative interactions network can be built on top. We
test the idea on Type 1 Diabetes GWAS (Wellcome Trust Case
Control Consortium data [28]) with 449,471 SNPs, 1963 cases
and 2938 controls.

Firstly, we randomly select 75% samples as the training
set (sampling without repeating) and use the remaining 25%
samples for testing. The raw categorical genotype values are
used as input. We run a fast GPU screening tool GWISFI [27]
with χ2 statistics to score every SNP pairs on the training
set. We then focused on 17 unique SNPs that constitute
the top 20 SNP pairs reported by GWISFI. We remove all
SNPs other than these 17 SNPs from the training and testing
sets, and generate the new training and testing sub sets
containing only these 17 SNPs. We run DCLN 50 times with
parameters β = 50, η = 100, epochs = 3000 and C = 100
on the training sub set. For each feature xi calculate the
average value of Ωi over the 50 runs, which leads to E[Ωi] =
{−41.3,−82.9,−4.9,−121.3,−73.1,−4.1,−110.7,−75.5,
−115.9,−128.4,−65.2,−99.9,−139.9,−72.8,−100.9,−91.8,

− 5.5} for {x1, ..., x17}. Assuming the discriminative
information can be reflected from Ω, then the question is
what Ω spectra can separate the discriminative features from
the noises. For the purpose of simplest demonstration, we
simplify the Ω spectra to a single cut-off −75 and generate
mini sets from sub set with mini set A containing all
xi for E[Ωi] < cutoff , and mini set B containing xi for
E[Ωi] > cutoff . In this case, mini set A contains 10 SNPs,
and mini set B contains 7 SNPs. So far, we don’t know
whether and which mini set contains the discriminative
features. To test it, we do the following experiment.

Fig. 9. DCLN Suggested SNP Interactions Network for T1D WTCCC

We use LIBSVM as an external verification tool. For the
first step, the SVM’s Linear, RBF and Polynomial kernels with
default settings are trained on the training sub set and test
on the testing sub set with following performance: Linear
kernel (Bal-Accuracy 0.658, AUC 0.734); RBF kernel (Bal-
Accuracy 0.676, AUC 0.745); Polynomial of degree 2 (Bal-
Accuracy 0.666, AUC 0.750). If one mini set contains most
of the discriminative SNPs and the other contains most of
the noise features, then the classification performance on one
mini set should be at least close to the performance on the
sub set, and the performance for the other mini set should
be close to a random guess. Therefore, we apply SVM to both
mini sets obtaining the following results. For mini set A
we have Linear kernel (Bal-Accuracy 0.651, AUC 0.713);
RBF kernel (Bal-Accuracy 0.647, AUC 0.732); Polynomial of
degree 2 (Bal-Accuracy 0.657, AUC 0.725). For mini set B
we have Linear kernel (Bal-Accuracy 0.514, AUC 0.558);
RBF kernel (Bal-Accuracy 0.559, AUC 0.553); Polynomial
of degree 2 (Bal-Accuracy 0.521, AUC 0.573). From these
performance numbers, it is obvious that the performance on
mini set A is very close to the sub set, and hence owns most
of the informative features. On the other hand, the performance
on mini set B is close to the random guess, and indicates
that mini set B contains most of the noises. Finally the
discriminative SNP interactions network for the top 20 pairs
made by χ2 test is illustrated in Figure 9, in which the SNPs
in red are 10 informative SNPs of mini set A, suggested by
DCLN.

VII. CONCLUSION

In this paper, we demonstrated that the proposed DCLN
model served as both an effective binary classifier and a learner
for high-level discriminative concepts. From the illustrated
discriminative concepts, it is clear that shallow model is also
able to tell the high-level concepts without relying on multi-
layer learning.

The other advantage of DCLN is its lower computational
complexity, requiring only w to be updated between the
input and hidden layer during the training. In our facial
recognition exercises, only about an hour is required to train

the DCLN using a low-end laptop comparing to hundreds of
machines required usually by a typical deep learning model.
This enables the possibilities in large-scale applications such
as high-dimensional genomics analysis. The algorithm can be
further accelerated using multicore computing techniques such
as general-purpose computing on graphics processing units
(GPGPU) to suit such applications.

ACKNOWLEDGEMENT

We thank Adam Kowalczyk, John Hopper, Miroslaw Ka-
puscinski, Christopher Leckie, Sheng Wang and XiaoLan Yu
for their help with the manuscript and preparing the data.

This study makes use of data generated by the Wellcome
Trust Case-Control Consortium. A full list of the investigators
who contributed to the generation of the data is available from
www.wtccc.org.uk.

This work has received the Google Ph.D. travel prize from
Google Australia.

REFERENCES

[1] Haykin, S., Neural Networks: A Comprehensive Foundation, MacMil-
lan, 1994.

[2] Arel, I., Rose, D.C., and Karnowski, T.P., Deep machine learning–A new
frontier in artificial intelligence research, IEEE Comput. Intell. Mag.
5(4), 13–18, 2010.

[3] Bengio, Y., Learning deep architectures for AI, Foundat. and Trends
Mach. Learn. 2(1), 1–127, 2009.

[4] Farabet, C., Couprie, C., Najman, L., and LeCun, Y., Learning Hier-
archical Features for Scene Labeling, Pattern Analysis and Machine
Intelligence, IEEE Transactions on. 35(8), 1915–1929, 2013.

[5] Le, Q., Ranzato, M., Monga, R., Devin, M., Chen, K., Corrado, G., Dean,
J., Ng, A., Building high-level features using large scale unsupervised
learning, ICML, 2012.

[6] Olshausen, B.A., and Field, D.J., Emergence of simple-cell receptive field
properties by learning a sparse code for natural images, Nature, 381,
607–609, 1996.

[7] Lee, H., Battle, A., Raina, R., and Ng, A.Y., Efficient sparse coding
algorithms, Proc. Adv. Neural Inf. Process. Syst. 801–808, 2007.

[8] Lee, H., Grosse, R., Ranganath, R., and Ng, A., Convolutional deep belief
networks for scalable unsupervised learning of hierarchical representa-
tions, ICML, 2009.

[9] Ba, J., and Caruana, R., Do deep nets really need to be deep?, Proc.
Adv. Neural Inf. Process. Syst. 2654–2662, 2014.

[10] Cortes, C., and Vapnik, V., Support-vector network, Mach.Learn. 20,
273–297, 1995.

[11] Vapnik, V., Statistical learning theory, Wiley, 1998.
[12] Huang, G. B., Zhu, Q. Y., and Siew, C. K., Extreme learning machine:

Theory and applications, Neurocomputing, 70, 489–501, 2006.
[13] Chang, C. C., and Lin, C. J., LIBSVM: A library for support vector

machines, ACM Transactions on Intelligent Systems and Technology,
2(3), 27:1–27:27, 2011.

[14] Wang, Q., Young, S., Harwood, A. and Ong, C.S, Discriminative Con-
cept Learning Network: Sample Source Code and Supplement, [Online],
https://sourceforge.net/projects/dcln/.

[15] Han, J., and Moraga C., The influence of the sigmoid function parame-
ters on the speed of backpropagation learning, From Natural to Artificial
Neural Computation, pp. 195–201. Springer, Berlin, 1995.

[16] Bache, K., and Lichman, M., UCI Machine Learning Repository, http:
//archive.ics.uci.edu/ml, Irvine, CA: University of California, School of
Information and Computer Science, 2013.

[17] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P., Gradient-based
learning applied to document recognition, Proceedings of the IEEE,
86(11), 2278–2324, 1998.

[18] Szummer, M., and Kapoor, A., Face Recognition Project, [Online]
Updated on Oct 31 2002, http://courses.media.mit.edu/2004fall/mas622j/
04.projects/faces/ (Accessed: Aug 6 2014).

[19] Hirschhorn, J.N., and Daly, M.J., Genome-wide association studies for
common diseases and complex traits, Nat Rev Genet, 6(2), 95–108,
2005.

[20] Culverhouse, R., Suarez, B.K., Lin, J., and Reich, T., A perspective
on epistasis: limits of models displaying no main effect, Am. J. Hum.
Genet. 70, 461–471, 2002.

[21] Marchini, J., Donnelly, P., and Cardon, L.R., Genome-wide strategies
for detecting multiple loci that influence complex diseases, Nat Genet.
37(4), 413–417, 2005.

[22] Hu, X., Liu, Q., Zhang, Z., Li, Z., Wang, S., He, L., and Shi,
Y., SHEsisEpi, a GPU-enhanced genome-wide SNP-SNP interaction
scanning algorithm, efficiently reveals the risk genetic epistasis in bipolar
disorder, Cell Research, 20(7), 854–857, 2010.

[23] Kam-Thong, T., Czamara, D., Tsuda, K., Borgwardt, K., Lewis, C.M.,
Erhardt-Lehmann, A., Hemmer, B., Rieckmann, P., Daake, M., Weber, F.,
Wolf, C., Ziegler, A., Pütz, B., Holsboer, F., Schölkopf, B., and Müller-
Myhsok, B., EPIBLASTER-fast exhaustive two-locus epistasis detection
strategy using graphical processing units, European Journal of Human
Genetics, 19, 465–471, 2011.

[24] Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A.,
Bender, D., Maller, J., Sklar, P., de Bakker, P.I., Daly, M.J., and Sham,
P.C., PLINK: a tool set for whole-genome association and population-
based linkage analyses, American journal of human genetics, 81(3),
559–575, 2007.

[25] Canela-Xandri, O., Juli, A., Gelp, J. L., and Marsal, S., Unveiling case-
control relationships in designing a simple and powerful method for
detecting gene-gene interactions, Genetic Epidemiology, 36(7), 710–
716, 2012.

[26] Goudey, B., Rawlinson, D., Wang, Q., Shi, F., Ferra, H., Campbell, R.,
Stern, L., Inouye, M., Ong, C.S., and Kowalczyk, A., GWIS - model-
free, fast and exhaustive search for epistatic interactions in case-control
gwas, BMC Genomics, 14(Suppl 3), S10, 2013.

[27] Wang, Q., Fan, S., Kowalczyk Andrew, Campbell., R.M., Goudey,
B., Rawlinson, D., Harwood, A., Herman, F., and Kowalczyk Adam.,
GWISFI: A universal GPU interface for exhaustive search of pairwise
interactions in case-control GWAS in minutes, Bioinformatics and
Biomedicine (BIBM), 2014 IEEE International Conference on, 403–409.
doi:10.1109/BIBM.2014.6999192.

[28] The Wellcome Trust Case-Control Consortium., Genome-wide associ-
ation study of 14,000 cases of seven common diseases and 3,000 shared
controls, Nature, 447(7145), 661–678, 2007.

[29] Agresti, A., Categorical Data Analysis, Wiley series in probability
and statistics, Wiley Interscience, 2 edition, 2002.

[30] Wang, Z., Wang, Y., Tan, K.-L. L., Wong, L., and Agrawal, D.,
eCEO: an efficient Cloud Epistasis cOmputing model in genome-wide
association study, Bioinformatics (Oxford, England), 27(8), 1045–1051,
2011.

[31] Chen, L., Yu, G., Miller, D. J., Song, L., Langefeld, C., Herrington,
D., Liu, Y., and Wang, Y., A Ground Truth Based Comparative Study on
Detecting Epistatic SNPs, Proceedings. IEEE International Conference
on Bioinformatics and Biomedicine, 1-4, 26–31, 2009.

https://sourceforge.net/projects/dcln/
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://courses.media.mit.edu/2004fall/mas622j/04.projects/faces/
http://courses.media.mit.edu/2004fall/mas622j/04.projects/faces/

	Introduction
	Method
	Algorithm for Training the DCLN Model
	Classification with Real World Datasets
	High-level Discriminative Concepts Learning
	Discriminative Biomarkers Identification in Genome-Wide Association Studies
	Conclusion
	References

