
1 Training and Approximation of a Primal

Multiclass Support Vector Machine

Alexander Zien1,2 and Fabio De Bona1 and Cheng Soon Ong1,2

1 Friedrich Miescher Lab., Max Planck Soc., Spemannstr. 39, Tübingen, Germany
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Abstract. We revisit the multiclass support vector machine (SVM) and generalize
the formulation to convex loss functions and joint feature maps. Motivated by
recent work [Chapelle, 2006] we use logistic loss and softmax to enable gradient
based primal optimization. Kernels are incorporated via kernel principal component
analysis (KPCA), which naturally leads to approximation methods for large scale
problems. We investigate similarities and differences to previous multiclass SVM
approaches. Experimental comparisons to previous approaches and to the popular
one-vs-rest SVM are presented on several different datasets.
Keywords: Multiclass SVM, Primal Optimization.

1.1 Introduction

SVMs [Schölkopf and Smola, 2002] have initially been developed for binary
classification. Multiclass classification can be considered the simplest and
most natural learning problem going beyond the binary setting. It is possible,
and still common practice, to reduce multiclass learning to a set of binary clas-
sification problems [Duan and Keerthi, 2005]. [Crammer and Singer, 2001]
provides evidence that, in general, genuine multiclass approaches can be su-
perior, but other studies suggest that it is hard to beat the one-vs-rest heuris-
tic, both in accuracy and computational complexity. Anyway the multiclass
SVM is of theoretical interest as it is conceptually identical to large margin
structured output learning [Taskar et al., 2003,Tsochantaridis et al., 2004].

Multiclass SVMs (in the following briefly called m-SVMs) have now been
investigated for several years [Hsu and Lin, 2002,Weston and Watkins, 1999].
Most literature on m-SVMs (as on SVMs) focusses on dual optimization. Mo-
tivated by [Chapelle, 2006] we investigate the primal problem for m-SVMs.
In the next section we set up optimization problem and gradients. In sec-
tion 1.3, we present numerical experiments. We first compare primal m-SVM
training to primal one-vs-rest. Then we investigate approximate optimization
and relate the incurred accuracy drop to the speed-up.

1.2 Methods

1.2.1 Multiclass SVMs (m-SVMs)

We consider linear classifiers in a feature space H defined by a potentially
non-linear map Φ : X → H. Binary SVMs learn a linear decision function
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f(·;w, b) : X → IR defined by f(x;w, b) = 〈w, Φ(x)〉 + b. Let Y now be a
set of m > 2 classes. We now consider m output functions, one for each
class, that quantify the confidence in the corresponding prediction. To do so
we follow the modelling used in [Tsochantaridis et al., 2004]. The key idea
of this approach is to use a joint feature map between data X and labels
Y denoted by Φ(x, y). The output function for a class y ∈ Y can then be
defined as

fy(x;w,b) = 〈w, Φ(x, y)〉 + by ,

with b = (b1, . . . , bm). Thus, the predicted class ŷ for a point x is chosen
to maximize the confidence in the prediction, ŷ = arg maxy∈Y fy(x;w,b).
Training amounts to finding parameters w and b that lead, at least to a
large extent, to correct predictions. That is, they should satisfy

fyi
(xi;w,b) > fu(xi;w,b) ∀u ∈ Y − {yi} ,

for the training data points (xi, yi). However, for many real world learning
problems these inequality systems are inconsistent. We use a loss function
ℓ : IR → IR≥0 to quantify the vexation about each inequality by applying it
to the corresponding slack siu = fyi

(xi;w,b)− fu(xi;w,b). Given a convex
monotonically decreasing loss ℓ, training can be implemented by the following
optimization problem:

min
w,b

1

2
‖w‖

2
+ C

n
∑

i=1

max
u6=yi

{ℓ (fyi
(xi;w,b) − fu(xi;w,b))} , (1.1)

where n is the number of examples in the training set, C is the regularization
parameter, and we write u 6= yi short for u ∈ Y −{yi}. In addition to fitting
the data by minimizing the loss, the objective function encourages learning
“smooth” functions by minimizing some norm of w (regularization). By
choosing the squared 2-norm, kernelization is enabled: optimization problem
and solution can be expressed in terms of dot products which can be replaced
by a kernel function k(xi,xj) = 〈Φ(xi), Φ(xj)〉.

1.2.2 Structured Output Kernels and Multiclass

Although the above m-SVM (1.1) is more general, in the following we will
restrict ourselves to the class of kernels that decompose into a kernel over X
and a kernel over Y. Let kX be a kernel on X , i.e. kX : X × X → IR, and
let kY be a kernel on Y, i.e. kY : Y × Y → IR. Then a joint kernel k can be
defined by

k ((x, y), (x′, y′)) = kX (x,x′) · kY(y, y′) . (1.2)

This structure is reflected in the feature space: the joint feature space will
be the tensor product of the feature space on X with that on Y. We can
thus view both the feature representations Φ(x, y) of data-label pairs and the
hyperplane normal w as being dim(H) × |Y| matrices.
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When the kernel matrix on Y is diagonal, decomposable kernels offer
significant computational advantages. In the matrix representation described
above, Φ(x, y) has a single non-zero column (indexed by y), which is equal to
√

kY(y, y)ΦX (x) (where ΦX is the feature map on X implied by kX ). In our
experiments, we will use (1.2) with the matching kernel (or identity kernel)
on Y, i.e. kY(y, y′) = δyy′ . This kernel imposes the least structure on the
classes.

Structured output learning [Taskar et al., 2003,Tsochantaridis et al., 2004]
(over finite sets of strucures) is conceptually a multiclass problem: each pos-
sible output structure can be modelled as a different class. The number of
classes is usually huge, e.g. exponential in the size of the size. This not
only renders one-vs-rest computationally too expensive, but can also pre-
vent generalization over classes. However, in the joint feature map frame-
work efficient learning can still be possible for several examples of important
output spaces [Tsochantaridis et al., 2004]. Prior knowledge on correlations
between related structures can be exploited for generalization by defining a
corresponding kY .

1.2.3 Representation via Kernel PCA

While Y is finite by definition, H may be infinite; we now describe how this
can be handled. Let the kernel matrix KX ∈ IRn×n be defined by (KX )ij =
kX (xi,xj). We can now use kernel PCA [Schölkopf and Smola, 2002] to find
a finite- (n-) dimensional representation of the data. The representer theorem
(e.g. [Schölkopf and Smola, 2002]) ensures that the optimal solution w lies in
a finite dimensional subspace. Following [Chapelle and Zien, 2005], we first
find a basis for this subspace, and then represent all points (and w) in terms
of that basis and work with that representation. For simplicity we make the
assumption that the span of the data points has full dimensionality.

The basis {u1, . . . ,un} we use should satisfy two criteria. First, each
basis vector ui has to be expressed in terms of the feature maps of the
data points Φ(xk), since these are the only points we know that lie in the
relevant subspace. Formally we have ui =

∑n
k=1 AkiΦ(xk) with a ma-

trix A ∈ IRn×n of coefficients. Second, the basis should be orthonormal
(the normality is just for convenience). This amounts to δij = u⊤

i uj =
∑n

k=1

∑n
l=1 AkiAljΦ(xk)⊤Φ(xl) or, in compact matrix notation, A⊤KA = I.

From this it follows that (AA⊤)−1 = K. One way of finding such a matrix
A is to eigendecompose K as K = VΛV⊤ and use A = VΛ−1/2. Another
choice of A would be the inverse of the Cholesky decomposition. Once the
basis is constructed, we have to represent the data points in this basis. Con-
sider the feature space image of a data point Φ(xj), which might be a training
point (j ≤ n) or a test point (n < j ≤ ñ). In either case it is mapped to its
projections onto the basis vectors, H → IRn, Φ(xj) 7→ x̃, as follows:

(x̃j)i = u⊤
i Φ(xj) =

m
∑

k=1

AkikX (xk,xj) , (1.3)
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or X̃ = A⊤K̃. Here the columns of X̃ = (x̃1, . . . , x̃ñ) ∈ IRn×ñ are the new
representations of the points xj , j = 1, . . . , ñ, and K̃ ∈ IRn×ñ is the extended
kernel matrix with Kij = kX (xi,xj) with i = 1, . . . , n and j = 1, . . . , ñ.

To verify that the new representation makes sense, observe that x̃⊤
i x̃j =

kX (xi,xj) for training points (ie, 1 ≤ i, j ≤ n). Proof: (X̃1,...,n)⊤(X̃1,...,n) =
K⊤AA⊤K = K. Note that the corresponding equality for the test points
does not hold in general, since the test points do not necessarily lie in the span
of the training points. This will, however, not thwart the SVM’s predictions,
since by the representer theorem w is in the span of the training points, and
thus the part orthogonal to it is irrelevant for the classification anyway. In
the rest of the paper, we will refer to x̃ ∈ IRd by just writing x; thus we
can restrict ourselves to the linear case without losing generality. Further, it
is possible to use less than the n training points for constructing the basis,
e.g. the first d points. This results in an approximation (since the part of
w orthogonal to the corresponding d-dimensional subspace is lost), but saves
computation time. Another possibility for approximation is by using the
incomplete Cholesky factorization. We discuss these approximations further
in the experiments section.

1.2.4 Primal Optimization via Conjugate Gradient

Since we are interested in gradient optimization, we replace the max over the
classes by a softmax. For a vector t = (tu)u=1...m we define

smaxγ(t) =
1

γ
log

(

(1 − m) +

m
∑

u=1

eγtu

)

. (1.4)

This version of the softmax, already proposed in [Chapelle and Zien, 2005],
has the nice property that it interpolates between maximizing and summing
(which might also be considered a useful way of aggregating losses over wrong
classes): limγ→∞ smaxγ(t) = maxu tu, limγ→0 smaxγ(t) =

∑

u tu.
Following [Chapelle, 2006], we train the m-SVM in the primal by a gradi-

ent descent technique. Thus we prefer the logistic loss, ℓ(s) = log (1 + e−s),
to the popular hinge loss, which is not differentiable.

Both the logistic loss and the softmax are continuously differentiable and
thus amendable to gradient based optimization. The gradients are given by
∂ℓ(s)

∂s = −e−s

1+e−s and
∂smaxγ(t)

∂tv
= eγtv

(1−m)+
P

m
u=1

eγtu
. For numerical stability we

must avoid exponentiating values γtu ≫ 1. Thus we compute the softmax
by using the equality smaxγ(t) = a + 1

γ log
(

(1 − m)e−γa +
∑m

u=1 eγ(tu−a)
)

with a = maxu tu; thus all exponents are negative. Similarly, we compute
the gradient by eγ(tv−a)/

(

(1 − k)e−γa +
∑m

u=1 eγ(tu−a)
)

with the same a.
We calculate the gradient associated separately for each data point i. For

convenience, we define vectors s and t (ommitting the subscript i to lighten
notation) by su = fyi

(xi;w,b)−fu(xi;w,b) and t = ℓ(s) where ℓ is extended
to vectors by applying it componentwise; thus s is a function of w and b,
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and t is a function of s. By using the chain rule, the gradients with respect
w and b can be written as

∂

∂w
smaxγℓ

(

w⊤(Φ(xi, yi) − Φ(xi, u)) + byi
− bu

)

= c ·A , (1.5)

∂

∂b
smaxγℓ

(

w⊤(Φ(xi, yi) − Φ(xi, u)) + byi
− bu

)

= c ·B , (1.6)

where A ∈ IRm×(d·m), B ∈ IRm×m, and c ∈ IR1×m are defined by

Au· = (Φ(xi, yi) − Φ(xi, u))
⊤

Buv = δyiv − δuv

cv =
∂smaxγ(t)

∂tv

∂ℓ(sv)

∂sv
.

Using this gradient, training was performed by running the conjugate gra-
dient code minimize.m by Carl Rasmussen.1 The matlab implementation is
available at http://www.kyb.tuebingen.mpg.de/bs/people/zien/mSVM/.

1.2.5 Comparison with previous multiclass approaches

We briefly compare and constrast our formulation, eq. (1.1), to other multi-
class SVMs in the literature. Using the matching kernel on Y, i.e. kY(y, y′) =
δy,y′ , the hyperplane normal w in the joint feature map decomposes into a
separate wu ∈ X for each class u. To enable comparison we plug in the
commonly used hinge loss. Expressing it by inequalities yields:

min
w,b,0≤ξ

1

2

∑

u

‖wu‖
2

+ C

n
∑

i=1

smaxγ (ξiu)u6=yi

s.t. ∀i : ∀u 6= yi : 〈wyi
− wu, Φ(xi)〉 + byi

− bu > 1 − ξiu

(1.7)

The first genuine multiclass SVM was proposed by [Vapnik, 1998] and
[Weston and Watkins, 1999]. It is essentially the special case of (1.7) ob-
tained by taking γ to 0, i.e. using the sum instead of the softmax.

min
w,b,0≤ξ

1

2

∑

u

‖wu‖
2

+ C

n
∑

i=1

∑

u6=yi

ξiu

s.t. ∀i : ∀u 6= yi : 〈wyi
− wu, Φ(xi)〉 + byi

− bu > 2 − ξiu

In the dual formulation, it turns out that the bias terms make it difficult
to decouple the constraints, and hence make active set methods ineffective.
However, as was proposed in [Hsu and Lin, 2002], this can be alleviated by

adding a regularization of the bias, ‖b‖2, to the objective.
Alternatively to penalizing all margin violations, one may penalize only

the wrong class with maximal loss, thus replacing the sum
∑

u6=yi
ξiu by

1 http://www.kyb.tuebingen.mpg.de/bs/people/carl/code/minimize/
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maxu6=yi
{ξiu} =: ξi. Thereby we obtain (up to the bias terms) the model of

[Crammer and Singer, 2001]:

min
w,b,0≤ξ

1

2

∑

u

‖wu‖
2

+ C

n
∑

i=1

ξi

s.t. ∀i : ∀u 6= yi : 〈wyi
− wu, Φ(xi)〉 + byi

− bu > 1 − ξi.

Our softmax can interpolate between these two modes of aggregation.
The historically first approaches to multiclass problems were to split them

up into several binary classification problems. The two main methods are one-
vs-rest and one-vs-one. Our m-SVM corresponds to a one-vs-rest setting, as
there is a single hyperplane for each class, while there is one for each pair
of classes in one-vs-one. However, the one-vs-rest setup in principle allows
points to be labeled with any subset of classes, while in m-SVMs each point
belongs to exactly one class.

1.3 Experiments

In the following, we evaluate our method on the five UCI datasets described
in [Duan and Keerthi, 2005], using the same splits into training data and
test data. For each dataset, three different sizes of training sets are fixed,
called small, medium, and large. For each combination of dataset and size,
20 splits into training set and test set are provided.2 We use the Gaussian
radial basis function (RBF) kernel on the inputs and, as discussed above, the
matching kernel on the classes.

1.3.1 Comparison of m-SVM to one-vs-rest

For each dataset and size, we perform three-fold cross-validation for model
selection over σ and C (γ is set to 1.0). Here, σ is the width parameter of
the Gaussian RBF kernel. Both parameters are chosen from a small grid,
namely σ ∈ {1/2, 1, 2, 4, 8} and C ∈ {1, 10, 102, 103, 104} for C. These values
are taken to be relative to default values, which are calculated from the
matrix of pairwise distances (for σ) and the kernel function values (for C) as
described in [Chapelle and Zien, 2005]. The results are shown in Table 1.1.

For the small training sets, we provide results by other approaches for
comparison. First, we show the results achieved in [Duan and Keerthi, 2005]
which is the best out of four investigated methods, which are consistently bet-
ter than ours. We conjecture that the best method in [Duan and Keerthi, 2005]
performs better due to probabilistic post-processing, which we do not con-
sider here. Our results are still comparable to (even slightly better than) those
achieved in [Duan and Keerthi, 2005] with a one-vs-rest method. To verify
that this is not due to modifications to the optimization problem (e.g. the

2 available at http://guppy.mpe.nus.edu.sg/~mpessk/multiclass.shtml
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m-SVM one vs. rest PWC PSVM
Set small medium large small small

ABE 1.94± 0.63 1.06 ± 0.38 0.61 ± 0.23 1.75 ± 0.65 1.16± 0.63
DNA 9.70± 0.57 7.85 ± 0.98 5.59 ± 0.47 9.71 ± 0.75 9.23± 1.73
SAT 11.12 ± 0.56 10.14 ± 0.37 9.77 ± 0.53 10.89 ± 0.94 10.27 ± 0.92
SEG 7.85± 1.44 5.25 ± 0.73 4.27 ± 0.57 8.88 ± 0.90 6.66± 2.24
WAV 15.80 ± 1.31 14.91 ± 1.08 14.09 ± 0.82 16.96 ± 0.86 13.20 ± 3.70

Table 1.1. Average test error (± standard error) on five datasets. The second
to fourth columns show the results for m-SVM. For the fifth column m-SVM was
run in a one-vs-rest mode. The rightmost column shows the best method from
Duan and Keerthi (2005), which uses a sigmoid to estimate posterior probabilities
of binary SVMs and combines them via a pairwise coupling strategy.
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Fig. 1.1. Trade-off of training time versus prediction accuracy for the KPCA and
Cholesky decomposition performed on all, half, 1/4, 1/8, . . . (right to left) of the
training points.

different loss function) we run one-vs-rest with exactly the same algorithm,
just using it for a set of m binary problems.

The results shown above suggest that m-SVMs do not consistenly outper-
form the simple one-vs-rest heuristic. However, the real strength and purpose
of true multiclass methods lies in problems with a priori known structure on a
large output space. The computational complexity of such structured output
learning still limits its applicability.

1.3.2 Speedup by approximation

In this section, we train SVMs using the low-rank versions of the decomposi-
tions described in Section 1.2.3. In Figure 1.1 we show how approximate
optimization can be used to speed up training, and how this affects the
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predictive accuracy. Note that for some datasets (e.g. SAT), the accuracy
of the approximate methods quickly decreases to the accuracy of the exact
m-SVM. However, for other datasets (e.g. DNA), the accuracy deteriorates
terribly upon approximation of the kernel, suggesting that class membership
does not correlate with the predominant strucure in the data.

Interestingly, for WAV and SEG, KPCA and Cholesky decomposition
perform very differently. The reason for this remains unclear. Since a low
rank approximation can be considered to be some sort of regularization, it
is interesting to observe that for SEG with KPCA approximation, the faster
version actually is also more accurate.

1.4 Conclusion

We present a primal optimization method for m-SVMs. Based on a careful
comparison to a one-vs-rest approach, keeping fixed everything else (e.g. the
loss), we confirm that it achieves roughly equal accuracy. This seems to
contradict the findings reported in [Crammer and Singer, 2001]; the reasons
for this remain to be understood.

For structured output learning problems one-vs-rest cannot be used, thus
research on m-SVM remains important. We show how the benefits of train-
ing in the primal [Chapelle, 2006], in particular high quality approximate
solutions, can be earned for m-SVM training.
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